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Current treatments of subfertile couples are usually empiric, as the true cause of subfertility often remains unknown.
Therefore, we outline the role of nutritional and biochemical factors in reproduction and subfertility. A literature
search was performed using MEDLINE, Science Direct and bibliographies of published work with both positive and
negative results. The studies showed that folate has a role in spermatogenesis. In female reproduction, folate is also
important for oocyte quality and maturation, implantation, placentation, fetal growth and organ development. Zinc
has also been implicated in testicular development, sperm maturation and testosterone synthesis. In females, zinc
plays a role in sexual development, ovulation and the menstrual cycle. Both folate and zinc have antioxidant proper-
ties that counteract reactive oxygen species (ROS). Thiols, such as glutathione, balance the levels of ROS produced by
spermatozoa and influence DNA compaction and the stability and motility of spermatozoa. Oocyte maturation, ovu-
lation, luteolysis and follicle atresia are also affected by ROS. After fertilization, glutathione is important for sperm
nucleus decondensation and pronucleus formation. Folate, zinc, ROS and thiols affect apoptosis, which is important
for sperm release, regulation of follicle atresia, degeneration of the corpus luteum and endometrial shedding. There-
fore, the concentrations of these nutrients may have substantial effects on reproduction. In conclusion, nutritional
and biochemical factors affect biological processes in male and female reproduction. Further research should identify
pathways that may lead to improvements in care and treatment of subfertility.
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Introduction

Subfertility is defined as the failure to conceive after 1 year of regu-
lar, unprotected intercourse with the same partner. Approximately
10–17% of all couples experience primary or secondary subfertility
at some time during their reproductive life (Mosher and Pratt, 1990;
Templeton et al., 1990; Wallace, 1995; Buckett and Bentick, 1997;
Snick et al., 1997; Philippov et al., 1998). In Table I, various causes
of subfertility and the corresponding frequencies are given. Subfertil-
ity resulting in permanent childlessness is very difficult for couples
to cope with (Downey et al., 1989; Whiteford and Gonzalez, 1995),
and therefore, subfertile couples try to conceive with all possible
techniques, such as assisted reproduction techniques (ART), which
do not actually treat the cause of the subfertility. Therefore, there is
a need to unravel the multifactorial origin of subfertility in which
many genetic and environmental factors act together.

Of particular interest are the environmental and lifestyle factors
implicated in subfertility, because, unlike genetic causes, these can

be targeted for curative or preventive measures. A significant but
largely neglected lifestyle factor is nutrition. Nutrition is important
for DNA synthesis, because most of its essential compounds are
derived from the diet. Moreover, several enzymes involved in DNA
synthesis are zinc or vitamin B dependent (Figure 1). DNA synthe-
sis is important for the development of spermatozoa and oocytes.
Animal studies have demonstrated that deficiencies of vitamins A,
C and D result in diminished fertility in rats and rainbow trout
(Kwiecinski et al., 1989; van Pelt and de Rooij, 1991; Ciereszko
and Dabrowski, 1995). In humans, the effects of nutrition on fertil-
ity have scarcely been investigated. Recently, our group found a
74% increase in normal sperm count and a 3% increase in abnormal
morphology in subfertile men after supplementation of folic acid in
combination with zinc sulphate (Wong et al., 2002).

Furthermore, the diet is a source of exogenous antioxidants (vita-
mins C and E), but several endogenously synthesized antioxidants,
such as glutathione, bilirubin and uric acid, are also essential.
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These antioxidants protect DNA and other important molecules
from oxidation and damage, which would otherwise induce apop-
tosis. A more detailed overview of glutathione metabolism is
shown in Figure 1.

Folate, zinc, glutathione and related thiols are implicated in the
oxidative pathway. Associations have been described between
these nutrients and their derivatives and the occurrence of miscar-
riages and congenital malformations. Subfertility can be caused by
the poor quality of the gametes and conceptus and/or the implanta-
tion failure that often present as early miscarriages. Derangements
in the oxidative pathway play a role in the pathogenesis of subfer-
tility. From this background, we give an overview of the studies in
which folate, zinc, glutathione and related thiols have been inves-
tigated in association with subfertility.

We are aware that the pathways discussed here are only part of
the complex processes implicated in reproduction, but we hope
that this review will stimulate research into these issues to contrib-
ute to a better diagnosis and treatment of subfertility in humans in
the future.

Materials and methods

A thorough literature search was performed on MEDLINE and
Science Direct, and via bibliographies of published works. The lit-
erature reviewed consisted of papers in English and Dutch pub-
lished between 1950 and 2005, discussing both experimental
animal and human studies. The latter studies included case reports,
randomized trials and observational studies. As search terms, we
used the following words in different combinations: fertilization,
subfertility, folate, folic acid, zinc, antioxidants, glutathione, thi-
ols, apoptosis, methylenetetrahydrofolate reductase (MTHFR) and
reactive oxygen species (ROS).

Folate

The micronutrient folate is present in a wide variety of foods, such
as green-leafy vegetables, liver, bread, yeast and fruits. Folate is
important for the synthesis of DNA, transfer RNA and the amino
acids cysteine and methionine (Figure 1). DNA synthesis plays an
important role in germ cell development, and therefore, it is obvi-
ous that folate is important for reproduction. It has also been

reported that folic acid, the synthetic form of folate, effectively
scavenges oxidizing free radicals, and as such can be regarded as
an antioxidant (Joshi et al., 2001). Despite its water-soluble char-
acter, folic acid inhibits lipid peroxidation (LPO). Therefore, folic
acid can protect bio-constituents such as cellular membranes or
DNA from free radical damage (Joshi et al., 2001). Only limited
knowledge is available on the impact of dietary folate and syn-
thetic folic acid on (sub)fertility.

Folate in males

Folic acid administration. Wong et al. (2002) found that folic
acid administration (5 mg) to subfertile and fertile men for 26
weeks resulted in a significant increase of folate concentrations in
seminal plasma, but no effect of this intervention was observed on
sperm count or motility of spermatozoa. The percentage of normal
sperm morphology, as determined according to strict criteria
(Menkveld et al., 1990), even decreased after folic acid interven-
tion; however, a 74% increase in total normal sperm count after
intervention with a combination of folic acid and zinc sulphate for
26 weeks was observed. An intervention study by Bentivoglio et al.
(1993) reported an increase in the number and motility of mature
spermatozoa and a decrease in round cell number (the presence of
immature cells) after 3 months of supplementation with 15 mg of
folinic acid (5-formyl tetrahydrofolate) in 65 men of infertile cou-
ples with round cell idiopathic syndrome. Another intervention
study by Landau et al. (1978) did not observe a beneficial effect of
folic acid supplementation on sperm count in 40 normozoosper-
mic and oligozoospermic men; however, both the dose and the
duration (10 mg for 30 days) were different compared with the
study of Bentivoglio et al.
MTHFR. When folic acid is administrated, it has to be converted
into the biologically active form 5-methyl tetrahydrofolate to
exert its functions. This conversion is carried out by MTHFR,
one of the key enzymes in folate metabolism. MTHFR converts
5,10-methylenetetrahydrofolate into 5-methyl tetrahydrofolate,
which subsequently donates a methyl group to cobalamin to
form methylcobalamin and tetrahydrofolate. Methylcobalamin
serves as a cofactor in the conversion of 5-methyl tetrahydro-
folate to tetrahydrofolate, in which homocysteine is remethyl-
ated to form the essential amino acid methionine in humans
(Figure 1). In the MTHFR gene, a common polymorphism,
resulting from a cytosine to thymine substitution (C677T), may
be present. The prevalence of heterozygosity or homozygosity
for this variant is approximately 40 and 10% in Caucasians,
respectively (Ueland et al., 2001), and these values vary between
populations. This polymorphism is associated with an increased
thermolability and reduced specific activity of MTHFR in vivo,
resulting in a residual enzyme activity of 65% for heterozygous
carriers and of only 30% for homozygous carriers (Frosst et al.,
1995; Van der Put et al., 1995). Individuals with the homozygous
genotype have mildly, although significantly elevated plasma
homocysteine concentrations compared with heterozygotes and
wild types, especially when folate concentrations are low
(Malinow et al., 1997).

The C677T polymorphism in the MTHFR gene is accompanied
by an altered folate metabolism and an impaired homocysteine
remethylation, resulting in an increased folate need. The effect of
supplementation with folic acid on semen parameters therefore is
likely to be dependent on the MTHFR genotype.

Table I. The causes of subfertility and their approximate frequencies 
(modified from Cahill and Wardle, 2002)

Total exceeds 100% as 15% of couples have more than one cause of 
subfertility.

Cause Frequency (%)

Male factor subfertility
Sperm defects or dysfunction 30

Female factor subfertility
Ovulation failure (amenorrhoea or oligomenorrhoea) 25
Tubal damage 20
Endometriosis 5
Cervical mucus defects or dysfunction 3
Uterine abnormalities (such as fibroids or 
abnormalities of shape)

(<1)

Unexplained subfertility 25
Coital failure or infrequency 5
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MTHFR and subfertility. Information on the effects of the
MTHFR genotype on biological parameters is scarce. Stern et al.
(2000) found that the 677T-homozygous genotype was associ-
ated with lower DNA methylation capacity compared with the
677C-homozygous genotype. This was explained by the reduced
availability of 5-methyl tetrahydrofolate, required for S-adenosyl-
methionine biosynthesis. Bezold et al. (2001) reported a higher
frequency of the homozygous 677T MTHFR genotype in infertile
men and suggested that products of MTHFR may have a role in
the pathogenesis of male infertility. They furthermore stated that
homozygous men in particular may benefit from folic acid supple-
mentation. We reported that, in contrast to 677T MTHFR hetero-
zygotes and homozygotes, sperm concentration in 677C
homozygotes significantly improved after folic acid and zinc sul-
phate intervention and concluded therefore that the residual
MTHFR activity in homozygote and heterozygote patients for the

C677T MTHFR polymorphism might be insufficient to improve
spermatogenesis compared with wild-type individuals (Ebisch
et al., 2003).
Zinc and MTHFR. Animal in vivo and in vitro studies have
shown that zinc deficiency decreases the absorption and metab-
olism of dietary folate (Ghishan et al., 1986; Quinn et al.,
1990; Favier et al., 1993) because of its function as a cofactor
for the folate-metabolizing enzymes dihydrofolate reductase
and γ-glutamyl hydrolase. Zinc itself, however, is not a cofactor of
the MTHFR enzyme; however, it is a cofactor for methionine
synthetase and for betaine-homocysteine methyltransferase
(Figure 1).

Folate in females

Little is known about the effects of folate or folic acid on oocyte
development. A study by Lo et al. (1991) demonstrated the existence

Figure 1. DNA synthesis, the folate cycle and glutathione metabolism. 1. Methionine-adenosyltransferase; 2. Methyltransferase; 3. S-adenosylhomocysteine
hydrolase; 4. Betaine-homocysteine-methyltransferase (BHMT) (zinc dependent); 5. Methionine-synthase (vitamin B12 and zinc dependent); 6. Serineoxidase; 7.
Methylenetetrahydrofolate reductase (MTHFR; vitamin B2 dependent); 8. Thymidylate-synthase; 9. Cystathionine-β-synthase (vitamin B6 dependent); 10. γ-
Cystathionase (vitamin B12 dependent); 11. γ-Glutamyl-cysteine-synthase; 12. Glutathione-synthase; 13. Glutathione peroxidase; 14. glutathione disulphide
(GSSG) reductase; 15. γ-Glutamyl transpeptidase; 16. γ-Glutamyl cyclotransferase; 17. 5-Oxoprolinase. dTMP, deoxythymidine monophosphate; dUMP, deoxyuridine
monophosphate; GSSG, glutathione disulphide; Pi, orthophosphate; PPi, pyrophosphate; THF, tetrahydrofolate.
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of an endogenous carrier-mediated uptake system for folate in frog
oocytes. Similar studies on the existence of such an uptake system
in human oocytes have not been reported. A study on homo-
cysteine concentrations in follicular fluid (FF) in women opting
for IVF treatment reported that women receiving folic acid supple-
mentation had significantly lower homocysteine concentrations in
their FF (the microenvironment surrounding the oocyte)
(Steegers-Theunissen et al., 1993; Brouns et al., 2003; Szymanski
and Kazdepka-Zieminska, 2003). The latter authors found that
women receiving folic acid supplementation (and subsequent
lower homocysteine FF concentrations) had a better quality
oocytes and a higher degree of mature oocytes compared with
women who did not receive folic acid supplementation (Szymanski
and Kazdepka-Zieminska, 2003). Moreover, it has been shown that
folic acid present in mouse preimplantation embryos is absolutely
essential for early embryo development, probably because of its
essential role in the synthesis of thymidine, which is required for
DNA synthesis and repair. Furthermore, all the folic acid neces-
sary for this process is present within the gametes at the time of
fertilization (O’Neill, 1998).

Zinc

Zinc is a micronutrient abundantly present in meat and seafood.
Zinc serves as a cofactor for more than 80 metalloenzymes
involved in DNA transcription and protein synthesis (Figure 1).
Because DNA transcription is a major part of germ cell develop-
ment, zinc is likely to be important for reproduction. Furthermore,
zinc finger proteins are implicated in the genetic expression of
steroid hormone receptors (Favier, 1992; Freedman, 1992), and
zinc also has anti-apoptotic (Chimienti et al., 2003) and antioxi-
dant properties (Zago and Oteiza, 2001). Two mechanisms for this
antioxidant function have been described. Zinc can counteract the
oxidation by binding sulphydryl groups in proteins and by occupy-
ing binding sites for iron and copper in lipids, proteins and DNA
(Bray and Bettger, 1990; Zago and Oteiza, 2001). To substantiate
these antioxidant effects of zinc, evidence was found for oxidative
damage of proteins, lipids and DNA in zinc-deficient rat and mice
(Oteiza et al., 1995; Bagchi et al., 1998), and zinc salts have been
shown to protect against oxidative damage and glutathione deple-
tion in mice (Bagchi et al., 1998). It is also important to report that
some trace metals can catalyse the reactions that lead to the forma-
tion of ROS. There is a study by Lloyd showing in vitro negative
effects on salmon sperm DNA, determining that at concentrations
of 20–50 mM and above, these metal ions cause maximum DNA
strand breaks. No such studies are available in humans, and the
in vivo dosage required for these concentrations in seminal plasma
is still unknown (Lloyd et al., 1998).

Zinc in males

Zinc is important in several aspects of male reproduction (Table II).
Zinc concentrations are very high in the male genital organs com-
pared with other tissues and body fluids (Mann, 1964), particu-
larly in the prostate gland, which is largely responsible for the
high zinc content in seminal plasma. Spermatozoa themselves also
contain zinc, which is derived from the testis. The relationship
between zinc concentrations in seminal plasma and semen fertility
parameters, however, is not clear. Kvist et al. (1990) found that
zinc concentrations in seminal plasma were lower in men with

idiopathic subfertility compared with fertile controls. Low seminal
zinc levels have been correlated with decreased fertility potential
(Marmar et al., 1975; Caldamone et al., 1979). Furthermore, it was
shown that men with sperm counts <20 million cells per millilitre
had slightly lower seminal plasma zinc concentrations compared
with men with normal sperm counts (Saaranen et al., 1987).
However, other authors reported that total seminal plasma zinc
concentrations were similar between normozoospermic and oli-
goasthenozoospermic patients (Carpino et al., 1998).
Zinc administration. Several intervention studies investigating
the effect of zinc on (sub)fertility have been conducted (Table III).
Ronaghy et al. (1974) found a higher, although not statistically
significant, proportion of already developed genitalia in malnour-
ished schoolboys after zinc supplementation compared with boys
not receiving extra zinc. The induction of mild zinc deficiency in
five healthy, fertile men resulted in a reversible drop in sperm con-
centration and count, sexual drive and testosterone in all study
subjects, explained by a reduction in Leydig cell function (Abbasi
et al., 1980). The underlying mechanisms of zinc on the fertility
parameters, however, are not yet clear.

Zinc in females

In females, zinc also seems to be important in reproduction; how-
ever, only relatively few investigations have been performed.
Shaw et al. (1974) found that zinc deficiency in female rabbits
resulted in disinterest in their male counterparts and in failure of
ovulation. Furthermore, the endometrium of these rabbits was pale
and inactive, and these rabbits were unable to conceive. However,
the authors could not exclude that the observed effects were
related to deficiencies in other critical nutrients (Shaw et al.,
1974). Zinc deficiency also led to abnormal estrous cycles in
female rats (Swenerton and Hurley, 1968). In addition, the effects
of zinc deficiency in two species of monkeys have been investi-
gated, and it was found that normal reproduction was impaired in
both the species. The pregnancy rate in zinc-deficient monkeys
was significantly lower compared with the original stock colony
because of a cessation in the seasonal menstrual cycles. However,
some zinc-deficient monkeys were still able to conceive (Swenerton
and Hurley, 1980).

Studies on the effects of zinc deficiency in women are scarce.
Ronaghy and Halsted (1975) described two women aged 19 and
20 years, suffering from nutritional dwarfism with delayed sexual
maturation. These women had no breast tissue or pubic hair and
had infantile external genitalia with extremely low blood plasma

Table II. The functions of zinc in male reproduction

Aspect of male reproduction References

Testicular steroidogenesis Favier (1992), Hamdi et al. (1997)
Testicular development Hamdi et al. (1997)
Oxygen consumption 
of spermatozoa

Eliasson et al. (1971), 
Huacuja et al. (1973)

Nuclear chromatin condensation Kvist (1980)
Acrosome reaction Riffo et al. (1992)
Acrosin activity Steven et al. (1982)
Sperm chromatin stabilization Kvist et al. (1990)
Testosterone synthesis Leake et al. (1984)
Conversion of testosterone to 
5α-dihydrotestosterone

Netter et al. (1981) D
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and erythrocyte zinc levels. After zinc supplementation, these
women experienced their first menstrual period and developed
breast tissue as well as pubic hair growth. Jameson (1976)
reported longstanding infertility in seven, normal sexually
developed women with celiac disease. These women all had nor-
mal menstrual cycles, but low serum zinc levels. Soltan and
Jenkins (1983) measured plasma zinc concentrations in 48 infer-
tile and 35 control women and found no differences between these
two groups. It was therefore concluded that zinc deficiency is not
a significant cause of subfertility.

Finally, Ng et al. (1987) investigated the zinc levels in FF of 33
women undergoing IVF in Singapore and did not observe any corre-
lation between FF zinc concentration and follicle volume, the pres-
ence of oocytes in the follicle or the eventual fertilization of the
oocyte. Therefore, these authors conclude that the FF zinc content
reflects neither the follicular status nor the status of the oocyte.

ROS, antioxidants and fertility

Antioxidants such as vitamin E (α-tocopherol), vitamin C (ascor-
bic acid) and vitamin A (carotenoids) present in nutrition are
important in restoring or maintaining the oxidant–antioxidant bal-
ance in tissues. Although several studies have demonstrated the
positive effects of in vitro antioxidants on semen quality, others
have failed to show such an effect because of varying doses and
therapy duration (Rolf and Cooper, 1999).

As mentioned before, dietary folate and zinc are also important
for several antioxidant functions. These antioxidants can provide
protection of cells against oxidative and electrophilic stress caused
by ROS, which would lead to damage of DNA or other important
structures such as proteins or cell membranes. Many investigations
have shown evidence for the role of ROS in the physiology and
pathology of both male and female reproductive functions (Riley
and Behrman, 1991b; de Lamirande and Gagnon, 1994). Animal
studies have shown that antioxidants present in nutrition are
important to maintain normal semen parameters and to achieve
pregnancy (Kwiecinski et al., 1989; Ciereszko and Dabrowski,
1995).

Another system involved in restoring or maintaining the proper
pro-oxidant–antioxidant balance in human tissues is the glutath-
ione (GSH)/glutathione-related enzyme system, quantitatively one
of the most important protective systems in humans. Glutathione
is a tripeptide composed of glutamate, cysteine and glycine (L-γ-
glutamyl-L-cysteinyl-glycine). It is synthesized in two consecutive
steps catalysed by γ-glutamylcysteine synthetase and glutathione
synthetase. The enzyme γ-glutamyl transpeptidase is involved in
the breakdown of glutathione, thereby cleaving the γ-bond result-
ing in glutamate and cysteinylglycine (Figure 1). Glutathione and
the GSH-related enzymes, glutathione-S-transferases (GSTs), are

involved in the metabolism and detoxification of many cytotoxic
and carcinogenic compounds, whereas GSH and glutathione per-
oxidases are pivotal for elimination of ROS (Beckett and Hayes,
1993). Glutathione itself also plays an important role in the protec-
tion of cells against oxidative and electrophilic stress caused by
ROS and radiation (Shan et al., 1990).

ROS and antioxidants in males

Spermatozoa and ROS. Human spermatozoa are capable of gener-
ating ROS (Alvarez et al., 1987; Aitken et al., 1989a; Alvarez and
Storey, 1989; D’Agata et al., 1990; Iwasaki and Gagnon, 1992).
ROS exert many effects on spermatozoa, which are summarized in
Table IV. From this table, one can conclude that the presence of
ROS seems very important in the process of fertilization of
oocytes.

It should be realized that the production of ROS by spermatozoa
is a normal physiological process. However, the amount of ROS
produced has to be carefully controlled because an imbalance
between the generation and scavenging of ROS may lead to dam-
age of DNA or other important structures. Spermatozoa are partic-
ularly susceptible to peroxidative damage, because most of their
cytoplasm is removed during the final stages of spermatogenesis.
Therefore, the spermatozoa have almost no cytoplasmic defensive
enzymes, such as catalase, glutathione peroxidase or GST, which
are involved in the protection of most cell types from peroxidative
damage induced by ROS. Furthermore, the plasma membranes of
spermatozoa contain large amounts of unsaturated fatty acids,
which are particularly vulnerable to free radical attack (Jones and
Mann, 1973). Thus, high concentrations of ROS are detrimental to
sperm. There is evidence supporting the use of antioxidants in
infertile male patients with elevated oxidative stress. Current evid-
ence supports treatment of selected cases of infertility as well as in
vitro media supplements during sperm preparation.

Membrane fluidity of spermatozoa is necessary for sperm
motility, the acrosome reaction and the ability of the spermatozoa
to fuse with the oocyte (Aitken et al., 1989a,b; Sharma and Agarwal,
1996; Zini et al., 2000). Studies are available showing positive

Table III. Effects of zinc supplementation on subfertility

Effect of zinc supplementation References

Accelerate the onset in sexual function Halsted et al. (1972)
Improves sperm count Marmar et al. (1975), Hartoma et al. (1977), Mahajan et al. (1982), Wong et al. (2002)
Improves sperm motility and morphology Marmar et al. (1975), Caldamone et al. (1979)
Improves testosterone concentration Antoniou et al. (1977), Hartoma et al. (1977), Mahajan et al. (1982)
Improves sexual potency Antoniou et al. (1977), Mahajan et al. (1982)

Table IV. Effects of reactive oxygen species (ROS) on spermatozoa

ROS regulate References

Epididymal maturation and physiological 
sperm concentrations

Cornwall et al. (1988)

Rate of hyperactivation de Lamirande and Gagnon 
(1993a,b)

Ability to undergo the acrosome reaction Burkman (1990), 
de Lamirande et al. (1993)

Attachment to oocytes Aitken et al. (1989a, 1993)
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effects of antioxidants on sperm DNA damage and pregnancy
outcome (Comhaire, 2000; Lamond et al., 2003). LPO caused by
high concentrations of ROS may lead to peroxidation of plasma
membrane lipids, resulting in altered membrane fluidity and sperm
dysfunction, which may be a cause of male subfertility. This is
supported by the observations that subfertile men have higher con-
centrations of ROS in seminal plasma, whereas an inverse correla-
tion exists between ROS concentration and motility, as well as a
normal morphology of the spermatozoa (Aitken et al., 1989a; Rao
et al., 1989; D’Agata et al., 1990; Iwasaki and Gagnon, 1992;
Agarwal et al., 1994; Aitken and Fisher, 1994; Alkan et al., 1997).
Glutathion and subfertility. Because of the involvement of GSH
in the protection of cells against oxidative stress caused by ROS,
this tripeptide may also be important in fertility. Raijmakers et al.
(2003) found that considerable amounts of GSH were present in
the seminal plasma of both fertile and subfertile men. However,
the median GSH concentrations were significantly higher in fertile
men compared with subfertile men. Furthermore, the GSH con-
centrations in seminal plasma were positively correlated with
sperm motility and inversely correlated with sperm morphology.
These results indicate that the concentrations of GSH in seminal
plasma play a role in fertility. This was also suggested by Lenzi et al.
(1993), who investigated the effects of i.m. injection of 600 mg of
GSH for 2 months. These authors observed a significant increase
in sperm motility, in particular forward motility, and a significant
reduction in the percentage of abnormal spermatozoa (Lenzi et al.,
1993). Another intervention study conducted by Kodama et al.
(1997) showed that a combination therapy of 400 mg of GSH, 200 mg
of vitamin C and 200 mg of vitamin E for 2 months significantly
improved sperm concentration and reduced the level of oxidative
DNA damage in the spermatozoa. However, Ochsendorf et al. (1998)
could not find a difference in seminal plasma GSH concentration
between azoospermic, oligozoospermic or normospermic men.

GSH and cysteine are also present in spermatozoa themselves.
Free sulphydryl groups in protamines of sperm chromatin are
important in the decondensation of the sperm nucleus after fertili-
zation (Rousseaux and Rousseaux-Prevost, 1995). Garrido et al.
(2004) did not find a difference in GSH content in spermatozoa
between fertile semen donors and infertile men whose wives had
no demonstrable cause of infertility. However, in this study, only
semen samples with >50 million spermatozoa were used. These
authors also observed that sperm GSH concentrations were low in
semen samples with <5% spermatozoa of normal morphology
(Garrido et al., 2004). Ochsendorf et al. (1998) also investigated
GSH content in spermatozoa and found that the mean intracellular
GSH concentration in oligozoospermic patients was significantly
lower compared with that of normal volunteers. Furthermore,
these authors investigated the relationship between sperm GSH
concentration and sperm function evaluated by the ability of the
spermatozoa to penetrate bovine cervical mucus and observed a
small but significant positive correlation between sperm GSH con-
centration and penetration of mucus (Ochsendorf et al., 1998).

ROS and antioxidants in females

The role of ROS at the level of the oocyte and female infertility is 
not clear. The intensive metabolism of granulosa cells and the
high numbers of macrophages and neutrophilic granulocytes in
the follicle wall at ovulation may point to active generation of
ROS. ROS levels in within certain physiological ranges may be

necessary for the normal development of the oocyte and subse-
quent embryo growth; however, as in many other systems, high
levels may indicate oxidative stress.
ROS functions. ROS are involved in oocyte maturation (Riley and
Behrman, 1991b), luteolysis (Riley and Behrman, 1991a; Sugino
et al., 2000), progesterone production by the corpus luteum
(Sugino et al., 1993; Musicki et al., 1994; Shimamura et al., 1995;
Sawada and Carlson, 1996) and ovulation. Inhibition of ROS actu-
ally hinders ovulation (Miyazaki et al., 1991). Furthermore,
Margolin et al. (1990) observed that ROS are involved in the loss
of sensitivity of granulosa cells to gonadotrophic hormones and in
the loss of steroidogenic function, both of which are characteris-
tics of follicular atresia. These results suggest that ROS may be
involved in the atretic regression of the cohort of newly grown fol-
licles to leave only one follicle that is destined for ovulation
(Margolin et al., 1990).
Oxidative stress. One definite consequence of an excess of ROS
in the ovary is damage of plasma membranes, but the question of
how this damage affects female fertility remains. Several investi-
gators have studied the involvement of ROS/oxidative stress in the
FF and its consequences on several outcome parameters of
assisted reproduction procedures. Pasqualotto et al. (2004) meas-
ured LPO as a marker for oxidative stress, and the total antioxi-
dant capacity (TAC) in pooled FF from women undergoing IVF
treatment, and found that both markers were positively correlated
with pregnancy rate. These authors therefore concluded that high
levels of LPO in FF are not impairing oocyte and embryo develop-
ment and quality and that a certain amount of oxygen is critical for
oocyte maturation (Pasqualotto et al., 2004). Furthermore, they
state that the higher TAC levels in these patients can buffer the
higher LPO levels. No correlations were found between LPO and
TAC levels and oocyte maturity, embryo quality, fertilization or
cleavage (Pasqualotto et al., 2004).

Similar results were obtained in a study by Attaran et al.
(2000) who investigated FF levels of ROS and TAC in women
undergoing IVF. These authors observed that granulosa cells
were the primary source of FF ROS and that patients who
became pregnant after IVF had significantly higher FF ROS lev-
els compared with patients who did not become pregnant, indi-
cating that ROS is a marker for obligatory minimal metabolic
activity within the follicle. Unlike Pasqualotto et al. (2004),
these authors did not observe a difference in TAC levels between
patients who became pregnant and those who did not (Attaran
et al., 2000). The results of Bedaiwy et al. (2002) also indicated
that women with higher FF levels of ROS were more likely to
become pregnant after IVF compared with women having lower
FF ROS levels. Oyawoye et al. (2003) reported that the mean
TAC levels in fluid from follicles that yielded successfully ferti-
lized oocytes were significantly higher than the mean TAC lev-
els from FF associated with oocytes that were not fertilized.
Conversely, the TAC concentration in FF eventually yielding
oocytes that gave rise to a surviving embryo was significantly
lower compared with TAC levels in fluid from follicles that did
not yield viable embryos at time of transfer. These authors there-
fore concluded that ROS may have different effects at different
stages of embryonic development (Oyawoye et al., 2003).
Finally, Wiener-Megnazi (2004) refined the results and con-
cluded that extreme reductive or oxidative states of the FF do not
favour the occurrence of pregnancy.
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ROS and (sub)fertility. Some reports deal with the role of ROS
and TAC in female fertility, but the specific role of glutathione in
female reproduction has not as yet been investigated. It is known,
however, that after fertilization, glutathione in pig oocytes is very
important for the reduction of disulphide bonds in the sperm
nucleus, involved in sperm nucleus decondensation and male pro-
nucleus formation (Yoshida et al., 1993). Furthermore, glutath-
ione in bovine oocytes is also important for male pronucleus
formation and for pronuclear apposition during fertilization
(Sutovsky and Schatten, 1997). This role of glutathione in the
oocyte is further endorsed by the observation that oocytes matured
in the presence of a glutathione antagonist were not capable of
decondensing the sperm nucleus and did not support pronucleus
apposition after IVF, while these changes could be reversed by the
addition of thiols (Sutovsky and Schatten, 1997). Furthermore,
supplementation of components of glutathione during in vitro mat-
uration of oocytes resulted in improved male pronucleus forma-
tion, normal fertilization and embryo development (Sawai et al.,
1997; Jeong and Yang, 2001; Rodriguez-Gonzalez et al., 2003).
Also, enhancement of glutathione or components of glutathione in
the oocyte and in culture medium of embryos during IVF or ICSI
procedures has been shown to improve fertilization rates and
embryo development (Takahashi et al., 1993; Kim et al., 1999;
Fukui et al., 2000; Ali et al., 2003).

Folate, zinc, antioxidants and apoptosis

Apoptosis is a programmed and physiological mode of cell death,
essential in morphogenesis and normal tissue remodelling. In con-
trast to necrosis, the apoptotic process does not elicit an inflamma-
tory response nor does it damage adjacent cells.

Folate and apoptosis

Folate is related to apoptosis. Several investigators observed that
folate deficiency resulted in significant apoptosis in ovarian cells
of the Chinese hamster (James et al., 1994), human hepatoma Hep
G2 cells (Chern et al., 2001), human T lymphocytes (Courtemanche
et al., 2004a,b), human trophoblasts (Steegers-Theunissen et al.,
2000) and human erythrocytes (Koury and Ponka, 2004). Chern
et al. (2001) furthermore reported that the mechanism whereby
folic acid deficiency results in apoptosis is the severe disruption of
methionine metabolism, leading to enhanced accumulation of
homocysteine. This latter compound was shown to be responsible
for an increase in oxidative stress through the overproduction of
hydrogen peroxide. Because of this oxidative stress situation, a
redox-sensitive transcriptional factor [natural killer (NK)-κB] was
found to be hyper-activated, resulting in apoptosis through expres-
sion of death genes (Chern et al., 2001). Other authors have
observed apoptotic effects of homocysteine on vascular smooth
muscle cells, while folic acid administration to the cell culture
diminished apoptosis, probably through reduction of homo-
cysteine concentrations (Buemi et al., 2001).

Zinc and apoptosis

As mentioned briefly in the section about zinc, this micronutrient
also possesses anti-apoptotic properties. The inhibitory effects of
zinc on apoptosis have been postulated to involve two mecha-
nisms: early in the apoptotic pathways, zinc may inhibit caspases
(proteases involved in programmed cell death), whereas later in

the apoptotic chain of events, zinc may suppress calcium- and
magnesium-dependent endonucleases, which cause apoptotic
DNA fragmentation (Perry et al., 1997; Chai et al., 1999; Truong-
Tran et al., 2000; Chimienti et al., 2003). However, excessively
high concentrations of zinc may be toxic and can induce apoptosis
and even necrosis (Truong-Tran et al., 2000; Chimienti et al.,
2003). Further evidence for the involvement of zinc in apoptosis is
indicated by the observations that zinc depletion can induce apop-
tosis in several cell types whereas zinc supplementation can pro-
tect cells against diverse pro-apoptotic molecules, preventing
programmed cell death (Sunderman, 1995; Chimienti et al., 2003).

Antioxidants and apoptosis

As mentioned above, folic acid and zinc both have antioxidant
properties. This is still another mechanism whereby these micro-
nutrients can affect apoptosis, because oxidative stress is known to
influence apoptosis. Buttke and Sandstrom state that ‘many agents
which induce apoptosis are either oxidants or stimulators of cellu-
lar oxidative metabolism’. Conversely, many inhibitors of apopto-
sis have antioxidant activities or enhance cellular antioxidant
defences, and these authors discuss several studies supporting this
statement (Buttke and Sandstrom, 1994). Inhibiting the ability of a
cell to scavenge or detoxify ROS is another way by which oxida-
tive stress can induce apoptosis. Several studies have indicated a
relationship between intracellular glutathione depletion and apop-
tosis. Chiba et al. (1996) observed that intracellular glutathione
modulated Fas-mediated apoptosis in malignant and normal
human T lymphocytes (Fas is a death factor that controls apopto-
sis). They found that Fas-resistant cells contained higher concen-
trations of glutathione and that pre-treatment of these resistant
cells with buthionine sulphoximine (an inhibitor of glutathione
synthesis) or depletion of intracellular glutathione reversed their
resistance to Fas-mediated apoptosis (Chiba et al., 1996). Further-
more, Beaver and Waring (1995) studying apoptosis in murine
thymocytes reported that a reduction in intracellular glutathione
preceded the onset of apoptosis, while pre-treatment of thymo-
cytes with glutathione before inducing apoptosis resulted in inhib-
ited apoptosis. Therefore, they conclude that a decrease in
intracellular glutathione or an increase in glutathione disulphide
(GSSG) (oxidized glutathione), or perhaps a change in the ratio of
glutathione to GSSG, constitutes a trigger for apoptosis (Beaver
and Waring, 1995). Finally, Iwata et al. (1997) found that glutath-
ione depletion in the culture medium of human lymphocytes
induced apoptosis because of an increase of ROS in the cultured
cells, whereas the addition of glutathione to the depleted medium
protected the lymphocytes from apoptosis (Iwata et al., 1997).

Sperm DNA fragmentation and apoptosis in males

Causes of DNA fragmentation. Apoptosis in certain classes of
germ cells is a normal feature of spermatogenesis in a variety of
mammalian species, including the human being, and may be
important in regulating sperm release (Hikim et al., 1998; Barroso
et al., 2000). Apoptosis is one of the causes of DNA fragmenta-
tion. Other causes include (i) chromatin remodelling during the
process of spermiogenesis; (ii) DNA damage during sperm trans-
port through the seminiferous tubules; (iii) activation of sperm
caspases and endonucleases and (iv) radio and chemotherapy. The
activation of caspases and endonucleases in sperm is different
from that described for the classic apoptosis pathway, as described
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by Sakkas et al. Caspase activity has been identified in the post-
acrosomal and midpiece regions of human spermatozoa (Paasch
et al., 2004) and, in addition to oxygen radicals, can be activated
by high temperature and toxic factors. Moreover, DNA damage
during sperm transport through the epididymis is increasingly
being recognized as one of the main mechanisms of DNA damage
of human spermatozoa and is mainly related to ROS-induced dam-
age (Ollero et al., 2001; Greco et al., 2005).
Apoptosis and subfertility. Apoptosis has been related to some
forms of male factor subfertility. The number of spermatozoa
expressing the cell surface protein, Fas, is low in men with normal
sperm numbers and higher in men with abnormal sperm parame-
ters (Sakkas et al., 1999). The expression of Fas in ejaculated
spermatozoa may be linked to abnormal levels of apoptosis, as
these spermatozoa are destined for apoptosis, but still appear in the
ejaculate. This can result in abnormal spermatozoa in the ejaculate
possibly contributing to male subfertility.

Furthermore, intracellular abnormalities such as various nuc-
lear alterations including an abnormal chromatin structure,
microdeletions in chromosomes, aneuploidy and DNA strand
breaks are observed in spermatozoa from infertile men, and these
possibly induce apoptosis (Barroso et al., 2000). ROS are known
to cause oxidative damage to DNA in spermatozoa (Hughes
et al., 1996; Kodama et al., 1997; Twigg et al., 1998a,b), pos-
sibly leading to a higher proportion of spermatozoa undergoing
apoptosis. This ROS-induced apoptosis can be inhibited by vari-
ous antioxidants (Hockenbery et al., 1993; Kane et al., 1993),
suggesting a significant role of oxidative stress as well as anti-
oxidant activity in inducing or inhibiting apoptosis. Of interest is
that the administration of antioxidants improves cellular redox
equilibrium. The use of isolated antioxidants such as vitamin C,
however, can paradoxically induce DNA damage (Halliwell,
1999). As mentioned above, the micronutrients folate and zinc,
reported to increase sperm count (Wong et al., 2002), also have
antioxidant properties (Joshi et al., 2001; Zago and Oteiza,
2001). Therefore, these two micronutrients also may have an
effect on apoptosis.

Apoptosis in females

Apoptosis in the ovary. Throughout female fetal and post-natal
life, 99.9% of follicles undergo atresia by means of programmed
cell death (Tilly et al., 1991; Tilly, 2001). Why so many oocytes
do not survive to become fertilized by a spermatozoon is not
understood as yet. Tilly (2001) states that oocyte apoptosis can be
considered as an utterance to the survival-of-the-fittest theory of
evolution, whereby the ongoing deletion of inferior oocytes
through the apoptotic pathway maximizes the chance of reproduc-
tive success. Yuan and Giudice (1997) investigated the role of
apoptosis in different stages of follicular development and
observed that programmed cell death occurred in human ovaries,
and particularly in the granulosa cell layer. Furthermore, they state
that apoptosis commences as soon as follicles begin to leave their
resting state, as primordial, primary and secondary follicles in the
human ovary are not affected by apoptosis, while from the pre-
antral stage onwards, the growing follicles show increasing
amounts of apoptotic granulosa cells (Yuan and Giudice, 1997).
Interestingly, dominant follicles do not have apoptotic granulosa
cells (Yuan and Giudice, 1997). Similar results were found in the
ovaries from rats (Hughes and Gorospe, 1991; Palumbo and Yeh,

1994). Apoptosis furthermore seems to be important in the degen-
eration of corpora lutea in the ovary (Tilly et al., 1991; Shikone
et al., 1996; Yuan and Giudice, 1997) and the cyclic shedding of
the endometrium in the uterus (Spencer et al., 1996).
Apoptosis and hormones. Yuan and Giudice (1997) reported that
estrogen-dominant follicles did not display any apoptosis, in con-
trast to androgen-dominant follicles in which apoptosis was a
characteristic feature. Therefore, these authors state that apoptosis
in follicles is a function of follicular androgen dominance. In a
review, Hsueh et al. (1994) discussed the hormonal control of
apoptosis in follicular atresia. They stated that gonadotrophins and
estrogens, in combination with several ovarian growth factors and
regulatory peptides, such as insulin-like growth factor-I (IGF-I),
epidermal growth factor (EGF)/transforming growth factor-α
(TGF-α) and basic fibroblast growth factor (bFGF), are involved
in the escape from follicular apoptosis, while androgens and atre-
togenic factors such as interleukin-6 (IL-6) and GnRH are
involved in the induction of apoptosis in follicles.
Apoptosis and (sub)fertility. A possible role suggested for apop-
tosis is the prevention of fertilization of potentially defective
oocytes after ovulation (Fujino et al., 1996). However, Van
Blerkom and Davis (1998) investigated the extent of apoptosis in
newly ovulated mouse and human oocytes and found no indication
of significant apoptosis. Furthermore, these authors showed that
penetration and fertilization failure of human oocytes were not
related to apoptosis. In addition, apoptosis of oocytes, if it
occurred at all, was patient specific and not related to maternal age
(Van Blerkom and Davis, 1998). The presence of apoptosis in
oocytes only from specific patients may have consequences
regarding their fertility (Van Blerkom and Davis, 1998).

Likewise, Idil et al. (2004) investigated the role of granulosa
cell apoptosis in the aetiology of idiopathic subfertility and found
that the apoptotic rate in women with unexplained infertility was
significantly higher compared with that in women with tubal
pathology. Therefore, these authors state that granulosa cell apop-
tosis may have a role in the aetiology of unexplained infertility
(Idil et al., 2004).

Nakahara et al. (1997a) also investigated the rate of apoptosis
per patient in relation to different causes of female infertility and
found that the degree of apoptosis in mural granulosa cells was
significantly higher compared with that of cumulus cell masses. In
addition, they investigated the differences in apoptotic rates
between women with tubal infertility, endometriosis, no infertility
(being treated because of male factor infertility) and idiopathic
infertility. The results showed no difference in mural granulosa
cell apoptosis; however, patients with endometriosis showed a sig-
nificantly higher incidence of apoptotic bodies in the cumulus
cells compared with patients in the other groups (Nakahara et al.,
1997a). Other authors also suggested involvement of deranged
apoptosis in endometriosis patients (Nakahara et al., 1998; Garcia-
Velasco et al., 2002; Garcia-Velasco and Arici, 2003). However,
not all authors could demonstrate such a connection (Cahill,
1998). Finally, Seifer et al. (1996) observed a possible role for
apoptosis in women with decreased ovarian reserve such as in pre-
mature ovarian failure syndrome.
Apoptosis and outcome parameters of fertility. Nakahara et al.
(1997a) investigated the relationship between apoptosis and param-
eters associated with the IVF programme. Results indicated that
significantly more apoptosis was found in both mural and cumulus
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granulosa cells in patients with less than six retrieved oocytes
compared with patients with more than six retrieved oocytes
(Nakahara et al., 1997a). Also, the apoptotic rates in mural granu-
losa cells were significantly higher in non-pregnant compared
with pregnant patients, indicating that a higher incidence of apop-
tosis could be indicative of a poor prognosis for IVF (Nakahara
et al., 1997a). Similar results were observed by Oosterhuis et al.
(1998) who found that women with <13% apoptotic granulosa-
lutein cells were far more likely to become pregnant compared
with women with >13% apoptotic cells.

In an additional study investigating apoptosis per follicle,
Nakahara et al. (1997b) reported that significantly more apoptotic
granulosa cells were present in follicles containing no oocyte com-
pared with follicles with an oocyte, whereas follicles associated
with fertilized oocytes contained significantly less apoptotic gran-
ulosa cells compared with follicles associated with non-fertilized
oocytes. In addition, follicles containing oocytes from which good
embryos developed contained significantly less apoptotic granu-
losa cells compared with follicles with oocytes from which mor-
phologically poor embryos developed (Nakahara et al., 1997b).
These findings also suggest that a higher incidence of apoptosis
might be a poor prognostic factor for IVF outcome (Nakahara
et al., 1997b).

Conclusions

Many environmental and biochemical factors are involved in male
and female reproduction. The importance of many of these factors is
not yet clearly understood. Still, numerous couples face unexplained
subfertility and can only be treated by ART. However, these treat-
ments do not address the cause of subfertility, for which no therapies
are available. A better understanding of underlying mechanisms in
(sub)fertility and better study results clarifying the effectiveness of
nutritional and biochemical factors are important to improve diagno-
sis and treatment. Such aspects include patient selection, study dura-
tion, sample size and dosage of the treatment. In addition to other
possible underlying mechanisms of subfertility, the pathways in
which nutrition, genetics, antioxidants and apoptosis are involved as
reviewed in this article need to be further investigated.

Many investigations in the field of subfertility reviewed here
were performed on laboratory animals or cell cultures, which is a
comprehensive first research design. However, it is very important
to verify the results in human subjects. Also, most investigations
actually performed in human beings involve couples participating
in ART procedures. This is the only way to obtain research mate-
rial in humans. The disadvantage is that all such couples experi-
ence subfertility, and because subfertility is known to be a
combination of female and male factors, no information on truly
fertile couples is available. It would be a great advantage to inves-
tigate the same biochemical parameters in fertile couples.
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