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BACKGROUND: Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two prominent signaling lyso-
phospholipids (LPs) exerting their functions through a group of G protein-coupled receptors (GPCRs). This review
covers current knowledge of the LP signaling in the function and pathology of the reproductive system.
METHODS: PubMed was searched up to May 2008 for papers on lysophospholipids/LPA/S1P/LPC/SPC in combi-
nation with each part of the reproductive system, such as testis/ovary/uterus. RESULTS: LPA and SIP are found in
significant amounts in serum and other biological fluids. To date, 10 LP receptors have been identified, including
LPA1 – 5 and S1P1 – 5. In vitro and in vivo studies from the past three decades have demonstrated or suggested the phys-
iological functions of LP signaling in reproduction, such as spermatogenesis, male sexual function, ovarian function,
fertilization, early embryo development, embryo spacing, implantation, decidualization, pregnancy maintenance and
parturition, as well as pathological roles in ovary, cervix, mammary gland and prostate cancers. CONCLUSIONS:
Receptor knock-out and other studies indicate tissue-specific and receptor-specific functions of LP signaling in repro-
duction. More comprehensive studies are required to define mechanisms of LP signaling and explore the potential use
as a therapeutic target.
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Introduction

Lysophospholipids (LPs) were originally recognized as quantitat-

ively minor lipid species produced during the biosynthesis of

membrane phospholipids (Pieringer et al., 1967). The signaling

properties of LPs were initially noticed in the 1960s (Vogt,

1963). Later, more studies established LPs as signaling molecules

(Tokumura et al., 1978, 1980; van Corven et al., 1989; Durieux

et al., 1993; Hill et al., 1994a). LPs demonstrated to be involved

in signaling include lysophosphatidic acid (LPA), sphingosine-1-

phosphate (S1P), lysophosphatidylcholine (LPC) and sphingosyl-

phosphorylcholine (SPC). Early studies revealed the effects of

LPA on blood pressure, uterine smooth muscle contraction and

platelet aggregation (Tokumura et al., 1978, 1980; Gerrard

et al., 1979; Schumacher et al., 1979). Subsequently, numerous

studies identified a range of physiological processes in which

LPs were involved, e.g. cell proliferation (van Corven et al.,

1989; Zhang et al., 1991; Olivera and Spiegel, 1993; Goodemote

et al., 1995; Yoshida et al., 1996), cell survival (Cuvillier et al.,

1996; Van Brocklyn et al., 1998; Goetzl et al., 1999; Weiner

and Chun, 1999), cell differentiation (Piazza et al., 1995; Sato

et al., 1998), cell morphological changes (Ridley and Hall,

1992; Jalink et al., 1993, 1994; Bornfeldt et al., 1995; Postma

et al., 1996; Sato et al., 1997; Fukushima et al., 1998), regulation

of gap junctions (Hill et al., 1994a), stimulation of the serum

response element (Hill et al., 1994b), induction of inward ion cur-

rents (Durieux et al., 1993), etc. These broad biological effects

have attracted increasing attention to LP signaling research in

recent years. A significant portion of the recent discoveries are

related to reproduction. This review will briefly introduce

receptor-mediated LP signaling and comprehensively update the

physiological and pathological functions of LP signaling in the

reproductive system.

Materials and Methods

PubMed was searched up to May 2008 for papers on lysophospholi-

pids/LPA/S1P/LPC/SPC in combination with each part of the repro-

ductive system, such as testis/ovary/uterus.

Signaling LPs and LP signaling

Extracellular signaling LPs have simple chemical structures: a 3-carbon

glycerol or a sphingoid backbone with a single acyl chain of varied

# The Author 2008. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.

For Permissions, please email: journals.permissions@oxfordjournals.org 519

Human Reproduction Update, Vol.14, No.5 pp. 519–536, 2008 doi:10.1093/humupd/dmn023

Advance Access publication June 17, 2008

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

upd/article/14/5/519/816418 by guest on 13 M
arch 2024



length and saturation (Ishii et al., 2004). LPA and S1P are the most

studied extracellular signaling LPs. Some LPs also have intracellular

functions that are not covered here (Spiegel et al., 1994, 1996;

Spiegel and Milstien, 2003; Pebay et al., 2007; Valentine et al., 2007).

LPA has been detected in significant amounts in biological

fluids such as serum (up to micromolar concentration) and plasma

(Tokumura et al., 1986; Baker et al., 2000; Aoki et al., 2002;

Sano et al., 2002), saliva (Sugiura et al., 2002), blister fluid

(Mazereeuw-Hautier et al., 2005), tear (Liliom et al., 1998), hen egg

white (Nakane et al., 2001), follicular fluid (Tokumura et al., 1999),

seminal plasma (Hama et al., 2002) and ascites (Xu et al., 1995b,

1998, 2003; Tokumura et al., 2007). Evidence has shown that many

cell types such as activated platelets (Mauco et al., 1978; Gerrard

and Robinson, 1989; Eichholtz et al., 1993; Fourcade et al., 1995),

erythrocytes (Fourcade et al., 1995), postmitotic neurons (Fukushima

et al., 2000), ovarian and cervical cancer cells (Shen et al., 1998; Eder

et al., 2000; Luquain et al., 2003), adipocytes (Gesta et al., 2002) and

mast cells (Mori et al., 2007) are able to produce LPA.

The main pathways for LPA production may differ in various cell

types and the metabolism of LPA in most cell types is still unclear

(Aoki, 2004). Studies on the production of extracellular LPA in the

serum have suggested two main pathways involving phospholipase

D (PLD), phospholipase A1 (PLA1), phospholipase A2 (PLA2) and

autotaxin/lysophospholipase D (ATX/lysoPLD) (Fig. 1). One main

pathway is the cleavage of phospholipids (PLs) by PLD to form phos-

phatidic acids (PAs). LPA is generated from hydrolysis of PAs by

PLA1 and PLA2, this process can be reversed by LPA acyltransferases

(Leung, 2001). The other main pathway is the cleavage of LPs such as

LPC, lysophosphatidylethanolamine and lysophosphatidylserine, by

ATX/lysoPLD to free LPA. PLA1 and PLA2 are involved in the

production of LPs from membrane PLs in this pathway. LPA is

dephosphorylated to monoacylglycerol by a family of three

membrane-bound lipid phosphate phosphatases (LPP1, LPP2 and

LPP3). Extracellular LPA is normally bound to molecules, such as

albumin, fatty acid binding proteins, gelsolin and lipoproteins, for

transportation and stability (Gaits et al., 1997; Pages et al., 2001;

Mills and Moolenaar, 2003; Aoki, 2004).

S1P also is found in significant levels in serum and plasma (Yatomi

et al., 2001). Major sources are platelets and erythrocytes (Yatomi

et al., 1995; English et al., 2000; Hanel et al., 2007; Ito et al., 2007;

Pappu et al., 2007). Lung endothelial cells (Zhao et al., 2007) and

mast cells (Mitra et al., 2006) can also produce this molecule. S1P

is the product of sphingosine phosphorylation by sphingosine

kinases (SphK1 and SphK2). Sphingosine is produced from ceramide,

a pro-apoptotic factor. Specific dephosphorylation of S1P by S1P

phosphohydrolases or non-specific dephosphorylation of S1P by

LPPs can reverse this process. S1P is metabolized by S1P lyase to

form phosphoethanolamine and hexadecenal (Brindley et al., 2002;

Le Stunff et al., 2004). As with LPA, extracellular S1P is also

bound to molecules, such as serum albumin and lipoproteins

(Okajima 2002; Kobayashi et al., 2006).

Previous debates about the mechanisms of extracellular LP signal-

ing have been silenced by the identification of molecularly cloned

receptors (Chun, 1999; Chun et al., 2000; Fukushima et al., 2001;

Ishii et al., 2004). While the majority of rigorous data supported the

existence of specific receptors for extracellular LPA and S1P, other

data, such as the reported lack of stereo-specific effects, the detergent-

like chemical structures and the use of LPs at high concentrations were

consistent with actions via non-receptor mechanisms such as mem-

brane perturbation or disruption. The cloning of the first LPA receptor

in 1996 (Hecht et al., 1996) and the following identification of nine

more LP receptors, as well as the establishement of receptor-specific

functions, have clearly defined a receptor-mediated mechanism for

the effects of extracellular LPs (Moolenaar, 2000; Spiegel and Mil-

stien, 2003; Anliker and Chun, 2004; Ishii et al., 2004; Birgbauer

and Chun, 2006; Gardell et al., 2006; Herr and Chun, 2007; Meyer

zu Heringdorf and Jakobs, 2007; Watterson et al., 2007).

The 10 so far identified LP receptors include LPA1 – 5 and S1P1 – 5

(Table I). Suggested additional possible LP receptor candidates

include: GPR87 and P2Y5 for LPA (Tabata et al., 2007; Pasternack

et al., 2008); GPR3 and GPR12 for S1P and SPC (Uhlenbrock

et al., 2002, 2003; Hinckley et al., 2005); G2A for LPC; OGR1 and

GPR4 for SPC, etc (Xu 2002; Bektas et al., 2003; Ishii et al., 2004;

Murakami et al., 2004; Seuwen et al., 2006). LPA1 – 5 and S1P1 – 5

are transmembrane G protein-coupled receptors (GPCRs). They can

differentially couple with G12/13, Gq, Gi/o or Gs to activate the down-

stream signaling cascades and eventually lead to LP-induced cellular

functions, such as cell proliferation, cell survival, cell differentiation

and cell morphological changes (Table I) (Fig. 1) (Ye et al., 2002;

Ishii et al., 2004; Gardell et al., 2006; Hannun and Obeid, 2008).

The LP receptors have overlapping expression patterns in specific

tissues and each receptor has its unique expression profile. Based on

data from northern analyses, the expression of LPA1, S1P1, S1P2

and S1P3 is ubiquitous although the expression levels in different

tissues vary, whereas the expression of other receptors is more con-

fined: LPA2 is highly expressed in testis and kidney; LPA3 in testis,

kidney and lung; LPA4 in heart and skin; LPA5 in small intestine

and stomach, with lower levels in skin, spleen and thymus; S1P4 in

lung, thymus and spleen; S1P5 in brain and skin (Contos et al.,

2000b; Ishii et al., 2001; Lee et al., 2006a, 2007). The expression of

LP receptors in the reproductive tissues are summarized in Table II.

Moreover, LP receptors may have preferences for different ligands.

For example, LPA3 is not as responsive as LPA1 and LPA2 to LPA

species with saturated acyl chains but has a relatively high affinity

for 2-acyl-LPA containing unsaturated fatty acids (Bandoh et al.,

1999; Fischer et al., 2001; Sonoda et al., 2002). The differential coup-

ling to G proteins, the differential receptor expression patterns and

ligand specificity may contribute to LP receptor-specific functions.

The specific functions of LP receptors have been determined

through molecular, biochemical, physiological, pharmacological and

genetic approaches. Receptor-mediated LP signaling has broad impli-

cations in the nervous system. For example, LPA1 is involved in

neuropathic pain, suckling behavior, psychiatric disease such as

schizophrenia, Schwann cell survival and morphological change,

and astrocyte proliferation (Weiner and Chun, 1999; Contos et al.,

2000a; Renback et al., 2000; Weiner et al., 2001; Harrison et al.,

2003; Inoue et al., 2004, 2006; Shano et al., 2008), while LPA1 and

LPA2 mediate brain formation (Kingsbury et al., 2003; Estivill-Torrus

et al., 2008). S1P2 plays a role in seizure and hearing (MacLennan

et al., 2001, 2006; Herr et al., 2007; Kono et al., 2007a), while

S1P5 is involved in development of oligodendroglial cells (Jaillard

et al., 2005) and S1P receptor(s) are implicated in multiple sclerosis

(Webb et al., 2004). LPA1 and S1P1 – 3 have crucial roles in cardiovas-

cular system processes, such as angiogenesis, atherosclerosis and

cardiac myocyte survival (Contos et al., 2000a; Liu et al., 2000;

Siess, 2002; Allende et al., 2003; Kono et al., 2004; Siess and

Tigyi, 2004; Maguire and Davenport, 2005; Zhang et al., 2007).

LPA1 – 3 and S1P1 – 3 have been implicated in processes of the respirat-

ory system: proinflammatory effects, acute respiratory distress syn-

drome and chronic inflammatory airway diseases (Ammit et al.,

2001; Jolly et al., 2002; Konishi et al., 2002; Gon et al., 2005;

Saatian et al., 2006; Kono et al., 2007b). LPA1 – 3, S1P1, S1P3 and
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S1P4 can mediate LP functions in the immune system (Zheng et al.,

2001; Graler and Goetzl, 2002; Bagga et al., 2004; Goetzl et al.,

2004; Matsuyuki et al., 2006; Chan et al., 2007; Czeloth et al.,

2007; Pappu et al., 2007; Wang et al., 2007b). In fact, FTY720, a

broad-spectrum S1P receptor agonist, is in phase III studies for treat-

ing demyelinating diseases, specifically multiple sclerosis (Budde

et al., 2006; Chun and Rosen, 2006; Mullershausen et al., 2007;

Zhang and Schluesener, 2007). LPA1 has a specific function in cranio-

facial formation (Contos et al., 2000a). LPA3 plays a critical role in

embryo implantation and spacing (Ye et al., 2005; Hama et al.,

2007). In addition, receptor-mediated LP signaling has been impli-

cated in stem cells and wound healing (Pebay et al., 2007; Watterson

et al., 2007), as well as multiple cancers including ovarian, prostate,

renal, bladder, breast, liver and other forms (Azuma et al., 2002,

2003; Mills and Moolenaar, 2003; Xu et al., 2003; Lee et al., 2005;

Murph and Mills, 2007; Ng et al., 2007; Ubai et al., 2007; van Meeteren

and Moolenaar, 2007). The roles of identified receptor-mediated LP

signaling in reproduction are summarized in Table III.

Figure 1: Metabolism of LPA and S1P (upper), differential coupling of their receptors to G proteins (middle), a few identified downstream signaling pathways

in reproduction (lower).

(metabolism) ATX/lysoPLD, lysophospholipase D/Autotaxin; LPA, lysophosphatidic acid; LPAAT, LPA acyltransferases; LPPs, lipid phosphate phosphatases;

LPs, lysophospholipids; PA, phosphatidic acids; PLD, phospholipase D; PLA1/2, phospholipase A1 and A2; PLs, phospholipids; S1P, sphingosine-1-phosphate;

SphK1/2, sphingosine kinases 1 and 2; SPPs, S1P phosphohydrolases; (downstream signaling) AC, adenylyl cyclase; Akt, protein kinase B; Ca2þ, calcium;

cAMP, cyclic AMP; CARMA3, CARD and MAGUK domain-containing protein 3; DAG, diacylglycerol; IP3, inositol 1,4,5-trisphosphate; MAPK, mitogen-

activated protein kinase; MEK, MAPK kinase; MEKK1, MEK kinase 1; NF-kB, nuclear factor kappaB; PI3K, phosphoinositol 3-kinase; PKCa, protein kinase

C alpha; PLC, phospholipase C; ROCK, Rho-associated kinase; uPA, urokinase plasminogen activator. Note: the shown downstream signaling pathways are

mediated through the specific G proteins but not all the LP receptors that activate these specific G proteins are necessarily involved in mediating these pathways.

LP signaling in reproduction
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LP signaling in testis

It was speculated for at least three reasons that LPA signaling had

potential roles in male reproduction (Budnik and Mukhopadhyay,

2002b). First, LPA biosynthetic enzymes, including PLA1 and

PLA2, and autotaxin/lysoPLD are present in the testis (Higgs and

Glomset, 1996; Lee et al., 1996; Ito et al., 2002; Sonoda et al.,

2002; Hiramatsu et al., 2003; Aoki, 2004; Xie and Meier, 2004).

Second, LPA1, LPA2 and LPA3 are highly expressed in the

mouse testis (Contos et al., 2000b), while LPA4 was detected in

the human testis (Noguchi et al., 2003). Third, the transgenic

mice overexpressing LPP1, which degrades LPA, showed severely

impaired spermatogenesis (Yue et al., 2004). In situ hybridization

demonstrated that LPA1, LPA2 and LPA3 are expressed in the

male germ cells. Deletion of these receptors in mice led to a

testosterone-independent reduction of mating activity and sperm

counts, with an increased prevalence of azoospermia in aging

animals. The physiological mechanism by which the deletion of

these receptors led to reduced mating activity is not readily appar-

ent. Increased germ cell apoptosis was responsible for the conse-

quent reduction of germ cell proliferation and the diminished

sperm counts, indicating LPA signaling as a germ cell survival

factor in spermatogenesis (Ye et al., 2008).

Northern analysis indicated S1P2 and S1P3 at medium expression

levels, S1P1 barely detectable, and S1P4 and S1P5 undetectable in

the adult mouse testis (Ishii et al., 2001). RT–PCR detected S1P1,

S1P2 and S1P5 in mouse spermatozoa (Matsumoto et al., 2005).

S1P1 and S1P2 were detected by immunohistochemistry in human

Sertoli cells, with occasional and weak staining in the spermatogonia

and early meiotic spermatocytes (Suomalainen et al., 2005).

As with LPA, S1P seemed to be a survival factor for male germ

cells. S1P partially protected mouse testicular germ cells against

radiation-induced cell death (Otala et al., 2004) and inhibited

human germ cell apoptosis in a culture of human seminiferous

tubules. Nuclear factor kappaB (NF-kappaB) and protein kinase B

(Akt) phosphorylation were implicated in the effect in humans, but

a receptor-independent mechanism was proposed (Suomalainen

et al., 2005). Furthermore, disruption of S1P lyase, which degrades

S1P and regulates the ratio of pro-apoptotic ceramide and anti-apopto-

tic S1P, led to reduced testis size in Drosophila caused by increased

apoptosis (Phan et al., 2007). In addition, sphingolipid signaling is

Table I. LP receptors.

Receptor (synonyms) Agonist(s) G protein(s) Referencesa

LPA1 (EDG-2/VZG-1/LPA1) LPA G12/13, Gi/o, Gq Hecht et al. (1996)

LPA2 (EDG-4/LPA2) LPA G12/13, Gi/o, Gq An et al. (1998)

LPA3 (EDG-7/LPA3) LPA Gi/o, Gq Bandoh et al. (1999), Im et al. (2000b)

LPA4 (p2y9/GPR23) LPA G12/13, Gi/o?, Gs, Gq Noguchi et al. (2003)

LPA5 (GPR92) LPA G12/13, Gs?, Gq Kotarsky et al. (2006), Lee et al. (2006a)

S1P1 (EDG-1/LPB1) S1P.SPC Gi/o Lee et al. (1998), Zondag et al. (1998)

S1P2 (EDG-5/AGR16/H218/LPB2) S1P.SPC G12/13, Gi/o, Gq Gonda et al. (1999)

S1P3 (EDG-3/LPB3) S1P.SPC G12/13, Gi/o, Gq Okamoto et al. (1999)

S1P4 (EDG-6/LPC1) S1P.SPC G12/13, Gi/o Van Brocklyn et al. (2000), Yamazaki et al. (2000)

S1P5 (EDG-8/NRG-1/LPB4) S1P.SPC G12/13, Gi/o Im et al. (2000a)

aThe listed references were the original ones describing the identification of LP receptors. Please refer to the following references for more complete
information of each LP receptor (Moolenaar, 2000; Hla et al., 2001; Mills and Moolenaar, 2003; Anliker and Chun, 2004; Ishii et al., 2004; Birgbauer and
Chun, 2006; Chun and Rosen, 2006; Gardell et al., 2006; Lee et al., 2006a; Milstien and Spiegel, 2006; Herr and Chun, 2007; Lee et al., 2007; Meyer zu
Heringdorf and Jakobs, 2007; Pebay et al., 2007; Yanagida et al., 2007).

Table II. The expression of LP receptors in the reproductive tissues.

Tissue Testis Penis Ovary Oviduct Blastocyst E3.5 uterus Placenta Mammary gland Prostate

M H H M M M M H M H H

LPA1 þþþ ND
p p p p þþþ ND

p þþ pa

LPA2 þþþ ND
pa p p p þþþ pa ND þþa pa

LPA3 þþþ ND
pa x

p
x þþþ p

pa p þ pa

LPA4 þ/2 h ND
p p p

ND þ ND
p

ND ND

LPA5 þ/2 ND ND ND ND ND þ/2 ND
p

ND ND

S1P1 þ p
ND ND ND ND þþþ p p

ND ND

S1P2 þþ p
ND ND ND ND þþþ p p

ND ND

S1P3 þþ p
ND

p
ND ND þþ p p

ND ND

S1P4 þ/2 ND ND ND ND ND þþþ ND ND ND ND

S1P5 þ/2 ND ND ND ND ND þ ND ND ND ND

aUp-regulation in pathological conditions, such as hypertensive disorder and tumorigenesis. Quantitative or semi-quantitative result: þþþ, high level of
expression; þþ, medium level of expression; þ, low level of expression; þ/2, extremely low level of expression. Non-quantitative result:

p
, detectable; x,

undetectable. h, LPA4 is detectable in human testis; p, LPA3 is detectable in pig uterus. M, mouse tissue; H, human tissue; E3.5, embryonic day 3.5; ND, no
data. References: (X. Ye and J. Chun, unpublished data; Im et al., 2000b; Ishii et al., 2001; Noguchi et al., 2003; Kitayama et al., 2004; Liu and Armant, 2004;
Hinckley et al., 2005; Johnstone et al., 2005; Nakamoto et al., 2005; di Villa Bianca et al., 2006; Guo et al., 2006; Kotarsky et al., 2006; Skaznik-Wikiel et al.,
2006; Kaminska et al., 2007; Li et al., 2007; Wang et al., 2007a; Ye et al., 2008).
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critical for male gametophyte development in Arabidopsis (Teng

et al., 2008).

LP signaling in male sexual function

Reports have suggested that LP signaling may also participate in male

sexual function. LPC is a major component of atherogenic oxidized

low-density lipoproteins related to hypercholesterolemia, which can

cause erectile dysfunction (Jung et al., 2007; Xie et al., 2008). It

was suggested that LPC-induced intracellular calcium concentration

[Ca2þ]i in human corporal smooth muscle cells might be involved in

hypercholesterolemia-induced erectile function (So et al., 2005).

Coordinately, a tentative LPC receptor, G2A, may also provide

pro-atherogenic stimulus to atherosclerotic lesions (Parks et al.,

2006). Therefore, the pro-atherogenic effect of LPC signaling might

have negative impact on erectile function. LPA also has atherogenic

activity (Siess and Tigyi, 2004). LPA activity was detected in the

seminal plasma (Hama et al., 2002). PLA2, an enzyme involved in

LPA production, was down-regulated in the corpus cavernosum of

hypercholesterolemic rats (Jung et al., 2007). The significance of

LPA signaling in male sexual function is unclear. S1P signaling, on

the other hand, may have a positive effect on penile erection, which

requires the coordinated arterial endothelium-dependent vasodilation

and sinusoidal endothelium-dependent corporal smooth muscle relax-

ation. S1P1, S1P2 and S1P3 were detected in the human penile artery

and corpus cavernosum. S1P can dramatically boost the relaxation

induced by acetylcholine in human corpus cavernosum strips. This

effect was mediated through the Ca2þ-independent Akt-endothelial

nitric oxide synthase pathway that led to the production of nitric

oxide, the principle peripheral pro-erectile neurotransmitter (di Villa

Bianca et al., 2006).

LP signaling in ovary

The potential role of receptor-mediated LPA signaling in ovary was

proposed before the identification of any LP receptor. Early studies

demonstrated that LPA induced Ca2þ-activated Cl2 current in naked

Xenopus laevis oocytes and a receptor-mediated Gi protein signaling

mechanism was responsible for this effect (Durieux et al., 1992,

1993). Since then more potential roles of LP signaling in the ovary

have been explored.

More recently LPA was detected in follicular fluid and in hens’ egg.

LPA was present at significant levels in follicular fluid of the human

pre-ovulatory follicle (Tokumura et al., 1999). Ovarian stimulation in

women may increase LPA levels since serum ATX/lysoPLD activity

from patients receiving ovarian stimulation was higher than in

women with natural cycles (Chen et al., 2008). Concordantly, LPA

was induced in incubated human follicular fluid by ATX/lysoPLD

(Tokumura et al., 1999). High amounts of acyl LPA (micromolar

range) were present in hen egg yolk, predominantly saturated LPA,

and hen egg white, predominantly polyunsaturated LPA produced

from LPs, suggesting that egg yolk LPA and egg white LPA may

play separate physiological roles in the development, differentiation

and growth of embryos (Nakane et al., 2001; Morishige et al., 2007).

The transcripts of LPA1, LPA2 and LPA4, but not LPA3, are detect-

able in the mouse ovary (X. Ye and J. Chun, unpublished data) (Ye

et al., 2005). LPA1, LPA2 and LPA3 mRNAs are detectable in the

granulosa-lutein cells from women undergoing in vitro fertilization

(IVF) (Chen et al., 2008). LPA4 has the highest mRNA expression

level in the human ovary among all the human tissues that were exam-

ined (Noguchi et al., 2003). The mRNA expression of LPA5 in ovary

has not been examined (Kotarsky et al., 2006; Lee et al., 2006a).

LPA signaling is involved in oocyte maturation in vitro. LPA,

10 mM, significantly increased the oocyte nuclear and cytoplasmic

maturation rates in golden hamster immature oocytes via cumulus

cells (Hinokio et al., 2002). LPA receptor(s) (on cumulus cells), Gi

and ERK (extracellular signal-regulated kinase)/p38 signaling path-

ways were involved in the closure or loosening of gap junctions

between cumulus cells and the oocyte, leading to an early decrease

of oocyte cAMP levels that may promote nuclear maturation of

mouse oocytes in vitro (Komatsu et al., 2006).

The role of LPA in granulosa-lutein cells from women undergoing

IVF was recently reported. LPA enhanced the expression of angio-

genic cytokines interleukin-6 (IL-6) and IL-8. LPA1, Gi, MAPK

(mitogen-activated protein kinase)/p38, PI3K (phosphoinositol

3-kinase)/Akt and NF-kappaB signaling pathways were involved in

the LPA-induced IL-8 expression. LPA2, Gi, MAPK/p38 and

NF-kappaB signaling pathways were involved in the LPA-induced

IL-6 expression. It was suggested that LPA in pre-ovulatory follicles

may play a role in the angiogenesis of the corpus luteum and the exces-

sive induction of IL-8 and IL-6 by LPA from multiple corpora luteae

of stimulated ovaries may be a pathophysiological cause of ovarian

hyperstimulation syndrome (Chen et al., 2008). Results from LPA2

transgenic ovaries suggested that the LPA-LPA2 circuit may regulate

ovarian cells both directly and through increases in protein growth

factor systems (Huang et al., 2004). A recent study demonstrated

that deletion of PTEN (phosphatase and tensin homolog deleted on

chromosome 10), a major negative regulator of PI3K-Akt signaling

pathway, led to activation of entire primordial follicle pool and prema-

ture ovarian failure in mice (Reddy et al., 2008). LP signaling regu-

lates PI3K-Akt signaling pathway (Fig. 1), whether or not LP

signaling is involved in follicle activation remains to be determined.

LPA induced Chinese hamster ovary (CHO) cell growth, migration

and lamellipodium formation through Gi. LPA1 may be the key LPA

receptor in mediating these effects as LPA2 and LPA3, which also

couple to Gi, are not expressed in CHO cells. LPA4, which may

couple to Gi, does not seem to be expressed in CHO cells at a signifi-

cant level and LPA5 does not couple to Gi (Noguchi et al., 2003; Lee

et al., 2006a, 2007; Yanagida et al., 2007). However, when Gi function

was blocked by pertussis toxin pretreatment, LPA inhibited, rather

than induced CHO cell migration in response to insulin-like growth

factor I. LPA1-G13-Rho signaling pathway relayed this inhibitory

effect (Yamaji et al., 2004; Sugimoto et al., 2006).

The effects of LPA signaling in bovine ovarian theca cells and luteal

cells are quite complicated. In bovine ovarian theca cells LPA signaling

has the following effects: induction of transient ERK phosphorylation

through LPA1-G12/13 signaling pathway (Budnik et al., 2003); redistri-

bution of protein kinase C d (PKCd) from the cytosol to the perinuclear

area; augmentation of luteinizing hormone (LH)-stimulated proges-

terone accumulation. LPA-induced nuclear localization of PKCd

might have a luteotropic function in the bovine ovary (Budnik and

Mukhopadhyay, 2002a). In bovine luteal cells, LPA signaling regulated

their morphology but its role in steroid synthesis was opposite to that

observed in theca cells. During the development and rescue of the

corpus luteum, LH induced major morphoregulatory effects such as

formation of stellate processes. LPA inhibited these processes via

Rho proteins (Budnik and Mukhopadhyay, 2001). LPA also dramati-

cally inhibited LH-induced progesterone production on ovarian mid-

cycle luteal cells presumably through LPA2 and possibly associated

with S1P production (Budnik and Brunswig-Spickenheier, 2005).

The function of LPA signaling in ovulation has not been fully

determined. Superovulation data from LPA3
(2/2) females did not

show any suppression of oocyte numbers released compared with

LP signaling in reproduction
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the wild-type (WT) controls. This agreed with the result that LPA3 was

not detectable in the mouse ovary. LPA1 and LPA2 were expressed

in the ovary. Preliminary data from LPA1
(2/2) LPA2

(2/2) females

indicated that these females had comparable numbers of implantation

sites to those of WT females, suggesting that LPA1 and LPA2 are

not critical for ovulation (X. Ye and J. Chun, unpublished data;

Ye et al., 2005).

S1P was identified to be a heat-stable growth factor in the follicular

fluid associated with follicular fluid high-density lipoproteins. The

S1P concentration was �170 nM (compared with �900 nM in

serum) in the human follicular fluid obtained from women undergoing

ovarian hyperstimulation. S1P induced endothelial proliferation and

angiogenesis through activation of ERK1/2, PKC and Akt signaling

pathways, but it is unclear (i) which cell types produce the S1P

in the follicular fluid, (ii) how S1P reaches the theca to affect angio-

genesis and (iii) which S1P receptors are involved in these processes

(von Otte et al., 2006). Since angiogenesis plays an important role in

the development of the ovarian follicle and its subsequent transition

into the corpus luteum, the S1P in follicular fluid and its role in

angiogenesis underscore S1P signaling as being important in ovarian

function.

Indeed, the function of S1P signaling in oocytes, especially the

protective role of S1P on oocytes, has been well documented. S1P

at 50 mM induced Ca2þ-activated Cl2 inward currents in X. laevis

oocytes and there was a complete cross-desensitization between

LPA and S1P responses (Durieux et al., 1993). The protective role

of S1P on oocytes has at least two aspects. Extracellular S1P not

only could protect bovine oocytes from a physiologically relevant

heat shock, but also could affect oocyte maturation in the absence

of heat shock. The blastocysts that arose from S1P-treated oocytes

that survived heat shock had a normal developmental potential. It

was suggested that S1P may be used to improve fertility in situations

where developmental competence of the oocytes was compromised

(Roth and Hansen, 2004). In addition, S1P-treated oocytes can resist

developmental apoptosis, in which the oocyte reserve undergoes

normal apoptotic depletion throughout post-natal life. Anti-cancer

treatments can lead to premature ovarian failure and infertility.

Promisingly, radiation-induced oocyte loss was completely prevented

by in vivo therapy with S1P in mice (Morita et al., 2000; Tilly

and Kolesnick, 2002). Pre-administration of S1P into ovarian bursa

had protective effects on whole-body irradiation-induced apoptosis

of primordial follicles in rats (Kaya et al., 2008). Local application

of S1P in mice also protected ovarian follicles from chemotherapy-

induced cell death (Hancke et al., 2007). These studies provide pro-

mises to potentially preserve the fertility of female cancer patients.

S1P3 and GPR3 are expressed in both oocytes and cumulus cells in

mice. GPR12 is only detectable in oocytes. Both GPR3 and GPR12 are

potential receptors for S1P and SPC. Incubation of mouse oocytes with

Table III. Receptor-mediated LP signaling in reproduction.

Site Effect(s) LPs Identified

receptor(s)

Referencesa

Testis Germ cell survival LPA LPA1 – 3 Otala et al. (2004), Ye et al. (2008)

S1P

Penis Erectile function LPC S1P1 – 3
b di Villa Bianca et al. (2006), Parks et al. (2006),

Jung et al. (2007)

S1P

Oocyte Maturation LPA LPA1 – 2
b Hinckley et al. (2005), Komatsu et al. (2006)

S1P S1P2

SPC GPR3/12
b

Ovary IL-6, IL-8 and growth factor induction LPA LPA1 – 2 Huang et al. (2004), Chen et al. (2008)

Blastocyst Differentiation LPA LPA1 – 2
b Liu and Armant (2004)

Xenopus oocyte Early embryo shape maintenance LPA XLPA1 – 2 Lloyd et al. (2005)

Uterus Uterine receptivity and embryo spacing LPA3 Ye et al. (2005), Hama et al. (2007)

Decidualization S1P S1P1 – 3
b Ishii et al. (2002), Skaznik-Wikiel et al. (2006)

Uterine contraction LPA LPA1 – 3
b Tokumura et al. (1980), Mikamo et al. (1998b),

Nilsson and Svensson (2003), Hama et al.

(2007), Leiber et al. (2007)

LPC

S1P S1P2
b

Placenta Differentiation, vasoconstriction S1P S1P1 – 3 Johnstone et al. (2005), Hudson et al. (2007)

Ovarian cancer cells Cancer cell growth, survival, migration, and invasion LPA LPA2 – 3 Pustilnik et al. (1999), Sengupta et al. (2003),

Estrella et al. (2007), Park et al. (2007)

S1P S1P1 – 3

Cervical cancer cells Cancer cell growth, survival, and migration LPA Xu et al. (2006), Rapizzi et al. (2007)

S1P S1P1 – 3

Breast cancer cells Cancer cell migration and metastasis LPA LPA1 – 2 Dolezalova et al. (2003), Stadler et al. (2006),

Chen et al. (2007)

S1P S1P2 – 3

aPlease refer to the related sections for more complete list of referencs; bIndicating proposed but not fully confirmed receptor(s).
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the GPR3/12 ligands SPC and S1P delayed spontaneous oocyte matu-

ration, an effect that seemed to be opposite of LPA. It was suggested

that the cAMP levels required for maintaining meiotic arrest in mouse

and rat oocytes were dependent on the expression of GPR3 and/or

GPR12 (Hinokio et al., 2002; Hinckley et al., 2005; Komatsu et al.,

2006).

The function of S1P signaling in ovary has also been indirectly

demonstrated through studies of enzymes involved in S1P metabolism

in different species: mutation of SphK2, which catalyzes S1P syn-

thesis, led to diminished ovulation in Drosophila (Herr et al., 2004);

ovary degeneration was observed in Drosophila with disrupted S1P

lyase, in which apoptosis was elevated (Phan et al., 2007); when

S1P lyase was knocked down in Caenorhabditis elegans, oocyte

production and ovulation were impaired (Mendel et al., 2003);

dihydrosphingosine C4 hydroxylase (DSH) is a key enzyme for

sphingolipid production in plants and yeasts and down-regulation of

one of the five DSH genes, DSH1, caused sterility in rice plants

(Imamura et al., 2007).

LP signaling in fertilization

Fertilization involves the binding and fusion of sperm and oocyte

cells. A main step is acrosome reaction, an exocytotic process that

exposes the zona-digesting enzymes around the anterior part of the

sperm head and facilitates sperm penetration of the zona pellucida.

LPA could activate sperm PKCa, which is implicated in the acro-

some reaction, and could promote actin polymerization, a process

necessary for spermatozoa incorporation deep into the oocyte cyto-

plasm. Rho GTPases are involved in the later process but the LPA

receptor(s) mediating this process is (are) unknown (Garbi et al.,

2000; Delgado-Buenrostro et al., 2005). However, LPA did not

seem to affect bovine sperm motility (Garbi et al., 2000). No

change of sperm motility was observed in mice deficient of three

LPA receptors, LPA1 – 3 (Ye et al., 2008). LPC was able to induce

the acrosome reaction in capacitated bovine sperm (Parrish et al.,

1988; Therien and Manjunath, 2003). LPC also accelerated and

synchronized the acrosome reaction of hamster spermatozoa, as

well as facilitating spermatozoa penetration of the zona pellucida,

the fusion process and polyspermy (Riffo and Parraga, 1996). In

addition, the detection of S1P receptors in mouse spermatozoa by

RT–PCR led to a speculation that S1P might play a role in the

acrosomal reaction (Matsumoto et al., 2005). Deletion of acid

sphingomyelinase, an enzyme regulating sphingolipid signaling, led

to impaired sperm motility (Otala et al., 2005).

LP signaling in oviduct

LPA1, LPA2, LPA3 and LPA4 mRNAs are expressed in the mouse

oviduct (X. Ye and J. Chun, unpublished data). LPA at 10 mM

could facilitate ovum transport in the mouse oviducts. Although

serum LPA levels can reach the concentration effective for ovum

transport, the LPA levels in mouse oviduct are unknown. The

receptor-mediated Gi-Ca2þ signaling pathway was involved in

LPA-induced mouse ovum transport (Kunikata et al., 1999). Deletion

of LPA1, LPA2 or LPA3, the three Gi-coupled LPA receptors, did not

seem to affect the transport of embryos to the mouse uterus (X. Ye and

J. Chun, unpublished data; Ye et al., 2005). This suggests that LPA

signaling is not critical for embryo transport in the oviduct under

physiological conditions, and/or other Gi-coupled LPA receptor(s)

are present that compensated for the effect in the LPA receptor

knockout mice.

LP signaling in early embryo development

LP signaling is involved in early stage embryo development and post-

implantation embryo development processes such as vascular for-

mation, vascular maturation and maintenance, heart development

and brain formation (Kupperman et al., 2000; Liu et al., 2000;

Allende and Proia, 2002; Contos et al., 2002; Kingsbury et al.,

2003; Kono et al., 2004; Mizugishi et al., 2005; Tanaka et al., 2006;

van Meeteren et al., 2006; Wendler and Rivkees, 2006). This

section focuses on the LP signaling in early stage embryo development

prior to implantation.

An early study revealed that the culture of embryos from the pro-

nuclear stage in the presence of LPA could significantly increase the

success rate of the development of 2-cell and 4-cell stage embryos

to blastocysts via a Gi-protein-linked receptor mechanism (Kobayashi

et al., 1994). A more recent study found mRNA expression of LPA1 in

differentiating mouse blastocysts, expression of LPA2 in late

blastocysts and no expression of LPA3. LPA could elevate [Ca2þ]i

levels, which in turn accelerated murine blastocyst differentiation.

LPA could also induce the transient accumulation of heparin-binding

epidermal growth factor (EGF)-like growth factor (HB-EGF) on the

embryo surface. Interfering with HB-EGF signaling through EGF

receptors ErbB1 or ErbB4 could attenuate LPA-stimulated blastocyst

differentiation (Liu and Armant, 2004).

A study of Xenopus also supported the importance of receptor-

mediated LPA signaling in early embryo development (Lloyd et al.,

2005). During early embryo development, the maintenance of

overall rigidity and shape of the whole embryo is required for embry-

ogenesis to occur. A cortical actin network of filament bundles

assembled in each cell is critical for maintaining embryo shape and

rigidity during the egg-to-blastula stage in Xenopus. LPA could

increase F-actin in the cortical actin network throughout the animal

cap and in the purse-strings, leading to faster healing in the animal

cap in early blastula stages in Xenopus. XLPA1 was most abundant

in oocytes (Kimura et al., 2001) and expressed at lower levels

throughout embryo development; the expression of XLPA2 began in

the mid-blastula stage and continued to at least stage 45, the

swimming tadpole. Both XLPA1 and XLPA2 were necessary and

sufficient for mediating LPA signaling in the correct pattern of

cortical actin assembly in Xenopus embryos. Rho and Rac were the

responsible downstream signaling molecules.

A recent study in mice demonstrated an anti-apoptotic role of

S1P in early embryo development. Acid ceramidase hydrolyzes

the pro-apoptotic ceramide into sphingosine, the precursor for the

anti-apoptotic S1P (Fig. 1) (Morales and Fernandez-Checa, 2007).

Acid ceramidase knockout embryos underwent apoptotic death and

could not survive beyond the 2-cell stage. S1P treatment of early

2-cell embryos from the Asah1(þ/2) intercrosses not only rescued

Asah1(2/2) embryos, but also enabled their progression from the

2-cell to 4–8-cell stage (Eliyahu et al., 2007).

LP signaling in embryo spacing and implantation

Embryo spacing is an event relevant to polytocous species in which

embryos are implanted nearly equidistant from each other along the

uterus. Implantation involves a competent embryo, a receptive

uterus, and reciprocal interactions between them to achieve apposition

and attachment of the embryo to the uterine luminal epithelium, inva-

sion of the embryo into the stroma and establishment of a placenta

(Carson et al., 2000; Paria et al., 2002; Genbacev et al., 2003;

Wang and Dey, 2006). Published reports and recent data have revealed

the roles of LP signaling in both embryo spacing and implantation.

LP signaling in reproduction
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LPA signaling influences embryo spacing and uterine receptivity in

mice (Ye et al., 2005; Hama et al., 2007). Deletion of LPA3 in mice

led to uneven embryo spacing, possibly contributed by defect in

uterine contraction, and delayed implantation caused by defect in

uterine receptivity. Embryo crowding and delayed implantation

were two segregated events based on these observations: (i) restor-

ation of on-time implantation in LPA3-null females failed to correct

embryo spacing and (ii) when single embryo, which cannot be

subject to embryo crowding, was transferred into LPA3-null uterus,

delayed implantation persisted. Deletion of LPA3 in mice also led to

delayed embryonic development, prolonged pregnancy and �50%

embryonic lethality. Ovulation, fertilization, embryo transport, blasto-

cyst development and decidualization were not adversely affected.

Prostaglandins (PGs) were identified to be at least partially

responsible for the phenotypes of LPA3
(2/2) females. Expression of

cycloxygenase 2 (COX-2), the rate-limiting enzyme for PG synthesis,

as well as PGE2 and PGI2 levels were suppressed in the preimplanta-

tion embryonic day 3.5 (E3.5) LPA3
(2/2) uteri. Exogenous PGE2

and PGI2 could rescue delayed implantation in the LPA3
(2/2)

females. These results reinforced the importance of PGs in embryo

implantation (Kennedy, 1977; Kinoshita et al., 1985; Song et al.,

2002). However, PGE2 and PGI2 failed to correct embryo spacing,

suggesting that different PGs that control uterine contraction or

possible non-PG mechanisms may be responsible for embryo

spacing (Ye et al., 2005; Hama et al., 2007). Limited studies have

identified several other factors that influence embryo spacing:

nicotine, phenoxybenzamine and prazosin caused crowding of

implantation sites near the utero-tubal junction in rats (Yoshinaga

et al., 1979; Legrand et al., 1987); estrogen (E2) and histamine

increased intrauterine migration of porcine embryos (Pope et al.,

1982); whereas relaxin reduced intrauterine embryo migration in rat

(Pusey et al., 1980); deletion of cPLA2a (Song et al., 2002) and

inhibition of Wnt/b-catenin signaling (Mohamed et al., 2005) led to

aberrant embryo spacing. COX-2/PG pathways were suggested to

be involved in the effects of cPLA2a. It is unknown if other factors

act through PG pathways and/or if LPA3-mediated LPA signaling

pathways cross-talk with these factors in regulating embryo spacing.

The embryo implantation defects present in LPA3
(2/2) females

have not been observed in other LP receptor-null females, e.g.

LPA1
(2/2), LPA2

(2/2), S1P2
(2/2) and S1P3

(2/2) mice. Among the

10 LP receptors, only LPA3 was almost exclusively expressed in

the luminal endometrial epithelium, while the remaining nine LP

receptors were indistinguishably expressed in the luminal endometrial

epithelium, stroma and myometrium at E3.5 mouse uterus. In addition,

only LPA3 was up-regulated by progesterone (P4) treatment. The

data suggest that the differential expression of LPA3 in luminal

endometrial epithelium and up-regulation of LPA3 by P4 may dis-

tinguish it from other LP receptors for its role in uterine receptivity

(X. Ye and J. Chun, unpublished data; Ye et al., 2005; Hama et al.,

2006).

The expression pattern of LPA3 in pig uterus suggests that LPA3

may play a role in pigs during early pregnancy. The highest expression

level of LPA3 was detected in the uterus on Day 10–12 of gestation,

when an embryo undergoes a dramatic elongation process prior

to implantation (Waclawik and Ziecik, 2007). The presence of

embryos also induced pig uterine LPA3 expression (Kaminska et al.,

2007). This was different from the expression pattern in mice, in

which LPA3 had similar expression patterns in uteri from early

pregnant and pseudopregnant mice (Ye et al., 2005; Hama et al.,

2006). Biomarkers for uterine receptivity have clinical applications,

especially in IVF programs. It will be of great interest to examine

the expression pattern of LPA3 in human endometrium to ascertain

if it can serve as a potential biomarker for uterine receptivity as can

some other potential biomarkers (Campbell and Rockett, 2006).

LPA, acting on decidual cells, can increase embryo outgrowth and

induce actin stress fiber formation in human decidual cells. The RhoA

signaling pathway mediated the LPA effects in the decidual cells

that may regulate embryo development and differentiation after

attachment (Shiokawa et al., 2000).

Preliminary observations indicated comparable numbers of

on-time implanted implantation sites and normal embryo spacing in

S1P2
(2/2) S1P3

(2/2) female mice (X. Ye and J. Chun, unpublished

data), suggesting no obvious defects in ovulation, fertilization,

embryo transport or uterine receptivity in S1P2
(2/2) S1P3

(2/2)

females. However, the litter sizes from S1P2
(2/2) S1P3

(2/2)

females were significantly lower (23–33% reduction) than that from

WT females mated with WT, S1P2
(þ/2) or S1P3

(þ/2) control males

(Ishii et al., 2002). These results suggest maternal defects beyond

implantation. S1P1, S1P2 and S1P3 had co-operative functions in

mediating S1P signaling in angiogenesis during embryonic develop-

ment (Liu et al., 2000; Kono et al., 2004). They were up-regulated

during decidualization, suggesting that these three receptors may

play co-operative roles in decidual angiogenesis as well (Skaznik-

Wikiel et al., 2006). Enzymes involved in sphingolipid metabolism

were also up-regulated in the uterus during decidualization (Kaneko-

Tarui et al., 2007). The importance of this regulation was confirmed

in SphK1(2/2)SphK2(þ/2) females that showed decidualization

defects. There is a link between S1P and PG signaling in early

pregnancy, but PG signaling did not seem to be critical for the

decidualization defects in the SphK1(2/2)SphK2(þ/2) females

(Mizugishi et al., 2007).

LP signaling in pregnancy and parturition

The involvement of LP signaling in pregnancy beyond implantation

could be multi-faceted. First, LPA signaling has been suggested in

the maintenance of human pregnancy as serum ATX/lysoPLD

activity, a key enzyme for LPA production, and LPA levels were

shown to increase during pregnancy (Tokumura et al., 2002). High

lysophospholipase activity was present in the human placental

tissues with the highest in the amnion (Jarvis et al., 1984). Although

amnion has been heavily implicated in the initiation of labor

presumably through the release of arachidonic acid, the high lysopho-

spholipase activity in amnion suggests that its products, including LPs,

might also involve in the regulation of labor.

Second, LP signaling has potential functions in placental and

vascular tone during pregnancy. High levels of LPA2 and LPA3

expression in the placentas of patients with hypertensive disorder

suggest that LPA signaling might be involved in this complication

(Li et al., 2007). Hypertensive disorder can worsen with the progress

of pregnancy. LPA levels increase during pregnancy. It is unknown

whether even higher levels of LPA are present in the pregnant patients

complicated with hypertensive disorder. LPA1, LPA3, LPA4 and LPA5

mRNAs were also detectable in mouse placenta (X. Ye and J. Chun,

unpublished data; Noguchi et al., 2003; Kotarsky et al., 2006). The

functions of LPA signaling in placenta await further exploration.

Several reports show the roles of S1P signaling in placental tropho-

blast differentiation and vascular tone. S1P inhibited the differen-

tiation of primary human cytotrophoblasts into syncytiotrophoblasts.

This inhibition of differentiation was mediated through S1P1 – 3, Gi,

adenylate cyclase and intracellular cAMP. The study suggested

that S1P signaling may play a role in pregnancy disorders, such as
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pre-eclampsia, that are related to improper differentiation of placental

trophoblasts (Johnstone et al., 2005). S1P induced vasoconstriction

in human placental arteries, a process mediated by increased Ca2þ-

sensitization via Rho-associated kinases and modulated by nitric

oxide (Hemmings et al., 2006). S1P also induced the isometric

tension of myometrial arteries isolated from normal pregnant

women at term. S1P1, S1P2 and S1P3 were detected in these arteries.

These results suggest that S1P may help regulate vascular tone during

pregnancy (Hudson et al., 2007).

Third, the following studies suggest that LP signaling could poten-

tially regulate uterine contractility as well as load-bearing during preg-

nancy and labor. An early study indicated that LPA had similar effects

as PGF2a on rat smooth muscle contraction and intrauterine pressure

(Tokumura et al., 1980). Although the effect of LPA signaling in par-

turition per se has not been established in vivo, deletion of FP, the

GPCR for PGF2a, led to parturition failure (Sugimoto et al., 1997).

LPA stimulated myosin light chain phosphorylation through RhoA

signaling in pregnant myometrial tissue (Moore et al., 2000). LPA

also induced stress fiber formation that may be involved in the main-

tenance of uterine contractions. The G12/13-Rho kinase signaling

pathway was suggested to mediate this effect (Gogarten et al.,

2001). In addition, the Gi/o signaling pathway involving the regulation

of [Ca2þ]i was responsible for LPA-induced cell proliferation of

human myometrial smooth muscle cells (Nilsson et al., 1998). A

follow-up study identified the critical role of Ca2þ/calmodulin-

dependent protein kinase in this effect as well as the detection of

LPA1, LPA2 and LPA3 in the human myometrial smooth muscle

cells (Nilsson and Svensson, 2003).

LPC may play a role in infection-related preterm labor. Significant

higher level of LPC was detected in human uterine endometrial cells

upon exposure to extract from common anaerobes in intrauterine

infection, accompanied with an elevation of arachidonic acid, a key

precursor for PG synthesis in regulating labor. PLA2 activity was

involved in the reported lipid metabolism (Mikamo et al., 1998a, b).

Since PLA2 and LPC are important components in the LPA metab-

olism pathway (Fig. 1) (Aoki, 2004), it is reasonable to expect that

LPA might also be involved in the infection-related preterm labor.

S1P can induce a contractile effect in rat myometrium presumably

through S1P2 (Leiber et al., 2007). S1P may play a role in labor. S1P

was identified as one of the components in the amniotic fluid that can

modulate the synthesis of PGs, key regulators of labor (Sugimoto

et al., 1997), in human amnion-derived cells (Kim et al., 2003). In

addition, SphK1, a key enzyme for S1P production, was detected in

rat glandular epithelium, vasculature and the myometrium, and was

up-regulated by P4. A recent study also suggested that SphK1

involved growth and differentiation of uterine tissues during preg-

nancy (Jeng et al., 2007).

LP signaling in cancer

A number of articles have reviewed the roles of LP signaling in

various cancers (Mills and Moolenaar, 2003; Xu et al., 2003; Brindley,

2004; Milstien and Spiegel, 2006; Sabbadini, 2006; Bandhuvula and

Saba, 2007; Morales and Fernandez-Checa, 2007; Murph and Mills,

2007; Oskouian and Saba, 2007; Tokumura et al., 2007; Van Brocklyn,

2007; van Meeteren and Moolenaar, 2007). LPA levels increased in

the plasma and ascites of patients with ovarian cancer, cervical

cancer or endometrial cancer (Shen et al., 1998; Mills et al., 2002;

Tokumura et al., 2007). LPs were suggested as potential biomarkers

for these cancers (Umezu-Goto et al., 2004). This section only

covers the potential roles of LP signaling in cancers in reproductive

organs, such as ovary, cervix, mammary gland and prostate, as well

as in related cell lines.

Ovarian cancer is the most extensively studied cancer with respect

to LP signaling in carcinogenesis. Early studies demonstrated LPA,

whose levels elevated in the plasma and ascites of ovarian cancer

patients, promoted ovarian cancer cell proliferation. LPA, S1P and

LPC were suggested as potential biomarkers for ovarian cancers and

LPA-like lipids were proposed as being responsible for intraperitoneal

malignancies (Xu et al., 1995a, b, 1998; Westermann et al., 1998;

Sutphen et al., 2004). However, another study indicated that serum

LPA could not differentiate benign from malignant ovarian tumors

(Pozlep et al., 2007). LPA acyltransferase beta, which converts LPA

to PA, was suggested as a specific prognostic marker (Niesporek

et al., 2005; Springett et al., 2005). The increased production of

LPA might be related to the down-regulation of LPP1, which degrades

LPA, in ovarian cancer cells (Tanyi et al., 2003).

LPA signaling may exert its role in ovarian cancers through regulat-

ing other factors: glycodelin, an angiogenic protein with a potential

immunosuppressive role in carcinogenesis (Ramachandran et al.,

2002); TRIP6 (thyroid receptor interacting protein 6), a focal adhesion

molecule involved in cell migration (Xu et al., 2004); telomerase, a

ribonucleprotein expressed in 95% of ovarian cancers and involved

in tumor progress (Bermudez et al., 2007); granulin-epithelin precur-

sor, a growth and survival factor for ovarian cancer (Kamrava et al.,

2005); internalization of Fas from the cell membrane to the cytosol,

a process that would protect ovarian cancer cells from FasL-bearing

immune cells (Meng et al., 2005); IL-6 and IL-8, angiogenic cytokines

(Chou et al., 2005); COX-2, which potentiates aggressive cellular

behavior (Symowicz et al., 2005); growth-regulated oncogene alpha

(GROalpha), a chemokine with increased levels detected in the

plasma and ascites of ovarian cancer patients (Lee et al., 2006b) and

urokinase plasminogen activator (uPA), a critical component present

at high concentration in ovarian ascites and ovarian cancers which

bears an inverse correlation with cancer prognosis (Pustilnik et al.,

1999; Estrella et al., 2007; Gil et al., 2008).

LPA receptors seem to play different roles in the ovarian cancers.

LPA2 and LPA3 but not LPA1 were up-regulated in ovarian cancer

tissues (Nakamoto et al., 2005; Wang et al., 2007a). LPA2 was a

key receptor in mediating LPA-induced production of GROalpha

(Lee et al., 2006b). LPA-induced uPA secretion in ovarian cancer

cells was dominantly mediated through LPA2 with contribution

from LPA3 (Pustilnik et al., 1999; Estrella et al., 2007). LPA3 was a

key receptor for mediating the chemotactic activity of LPA (Sengupta

et al., 2003). However, LPA1 seemed to be the key receptor in mediat-

ing ascitic LPA effects on other cells (Yamada et al., 2004; Sako et al.,

2006).

Several LPA downstream signaling pathways have been identified

in ovarian cancer cells. The up-regulation of uPA by LPA was

mainly mediated through the Gi-Ras-PKCa-CARMA3-NF-kappaB

signaling pathway in ovarian cancer cells. CARMA3 (CARD and

MAGUK domain-containing protein 3) is a scaffolding protein

required for GPCR-induced NF-kappaB activation (Li et al., 2005;

Grabiner et al., 2007; Mahanivong et al., 2008). Both Gi-Ras-MEKK1

(MAPK kinase kinase 1) and G12/13-RhoA-ROCK (Rho-associated

kinase) signaling pathways contributed to LPA-stimulated ovarian

cancer cell migration by facilitating focal adhesion kinase redistri-

bution and autophosphorylation, respectively (Sawada et al., 2002;

Bian et al., 2004, 2006). LPA signaling in ovarian cancer cells

could be attenuated by RGS, a regulator of G protein signaling

proteins that deactivates G proteins (Hurst et al., 2008). LPA-induced

IL-6 expression was via a Gi/PI3K-Akt/NF-kappaB pathway (Chou
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et al., 2005), while transcription factors NF-kappaB and AP-1, which

were induced by LPA, might synergistically stimulate IL-8 expression

(Fang et al., 2004).

S1P was also identified in the ascites of ovarian cancer patients and

as a mitogenic and cell survival factor for ovarian cancer cells (Hong

et al., 1999). At low concentrations S1P had an invasive effect similar

to LPA, but S1P inhibited the invasiveness at high concentrations.

The dual effects on ovarian cancer invasion were probably through

the regulation of LP receptors (Smicun et al., 2006, 2007). S1P

induced [Ca2þ]i and chemotactic migration of ovarian cancer cells.

S1P1/2/3-Gi-ERK/p38 MAPK/Akt mediated these effects (Park

et al., 2007). S1P and SPC had an effect similar to LPA on induction

of IL-8 expression (Schwartz et al., 2001).

The cervical cancer cell line HeLa has been used to study the roles

of LPs in cervical cancer. LPA induced HeLa cell migration and sur-

vival. S1P1, S1P2 and S1P3 were detectable in HeLa cells, but only

over-expressed S1P2 and S1P3 seemed to mediate S1P-induced

[Ca2þ]i and cell survival (Rapizzi et al., 2007), whereas S1P1

seemed to mediate HeLa cell proliferation (Xu et al., 2006). A class

II PI3K-activated signaling pathway was identified as mediating cell

migration (Maffucci et al., 2005), while the Gi/o-PI3K-Akt signaling

cascade was responsible for survival (Fang et al., 2000). Tumor necro-

sis factor-related apoptosis-inducing ligand (TRAIL) is able to induce

apoptosis in many cancer cells. Both S1P and LPA inhibited

TRAIL-induced apoptosis in HeLa cells. This anti-apoptotic effect

of LPs involved the activation of the PI3K-Akt signaling pathway

(Kang et al., 2004).

LP signaling may also play a role in breast cancer progression.

Human mammary gland expressed LPA1, LPA2 and a lower level of

LPA3. The up-regulation of LPA2, but not that of LPA1 and LPA3, in

the mammary gland carcinoma tissue and post-menopausal women

suggest that LPA2 may be related to breast cancer, especially post-

menopausal breast cancer (Kitayama et al., 2004). Studies from

breast cancer cell lines indicated that both LPA1 and LPA2 could

mediate LPA-induced chemotaxis in breast carcinoma cells, but

LPA1 was more efficacious than LPA2 (Chen et al., 2007). LPA1 was

also considered to be the culprit for LPA-promoted breast cancer cell

migration (Stadler et al., 2006) and metastasis in bone (Boucharaba

et al., 2004, 2006). LP signaling might be involved in breast cancer

cell proliferation (Imagawa et al., 1995; Xu et al., 1995a). LPA

induced stress fiber and focal adhesion formation in breast cancer

cells (Dorfleutner et al., 2007). EGF receptor, whose overexpression

is a prognostic indicator of a poor outcome in multiple tumor types,

was identified to be in the signaling network for LPA-induced breast

cancer progression (Boerner et al., 2005). The effects of LPA on

breast cancer cells could be potentiated by insulin through the induction

of geranylgeranylated RhoA, and consequently the augmentation of

LPA-induced cyclin E expression and degradation of p27Kip1 (cyclin-

dependent kinase inhibitor) and cell cycle progression (Chappell

et al., 2000, 2001). LPA and S1P could promote the migration of meta-

static human breast cancer cells (Sliva et al., 2000). S1P could induce

[Ca2þ]i and chemokinetic migration in human breast cancer cells, a

process that might be mediated through S1P2 and S1P3, but not S1P1

(Dolezalova et al., 2003).

LPA1, LPA2 and LPA3 were detected in the prostate. They had

significantly higher expression levels in malignant compared with

the benign prostate tissues (Im et al., 2000b; Guo et al., 2006). LPA

signaling plays multiple roles in prostate cancer: facilitating early

prostate cancer development by inhibiting autophagy (Chang et al.,

2007); inducing prostate cancer cell proliferation, survival, morpho-

logical changes, migration and invasion. LPA1 seemed to be the key

receptor in mediating LPA-induced prostate cancer cell proliferation

and migration (Daaka, 2002; Guo et al., 2006; Hao et al., 2007). Tyro-

sine kinase EGF and matrix metalloproteinases were involved in the

LPA-induced ERK mitogenic signaling pathway (Kue et al., 2002).

The LPA receptor-Akt-NF-kappaB signaling axis may mediate

LPA-induced prostate cell survival (Raj et al., 2004). LPA may also

play its roles via the involvement of other factors: phosphorylation

of proline-rich tyrosine kinase 2, a potential marker in prostate epi-

thelium for the malignancy of prostate cancer (Picascia et al.,

2002); IL-6, which appeared to mediate LPA-induced prostate

cancer cell growth and the cross-talk between stromal and epithelial

prostate cells (Sivashanmugam et al., 2004); CYR61, an extracellular

matrix signaling protein implicated as a secreted autocrine and/or

paracrine mediator for LPA in prostate stromal and epithelial hyper-

plasia (Sakamoto et al., 2004). LPA stimulated prostate cancer cell

invasion through alterations of RhoA and NF-kappaB activity

(Hwang et al., 2006). RhoA also played a role in LPA-induced

morphological changes of prostate cancer cells (Chen et al., 2005).

LPA-induced Rho activation was dependent on PDZrhoGEF, a rho

guanine nucleotide exchange factors (Wang et al., 2004). S1P signal-

ing, on the other hand, mainly serves as an anti-apoptotic factor in

prostate cancer. Sphk1 balances the ratio of ceramide/S1P. Overex-

pression of SphK1, which increases the production of S1P and

decreases ceramide/S1P ratio, impaired the efficacy of chemotherapy;

whereas inhibition of SphK1 was related to a smaller tumor volume as

well as reduced occurrence and number of metastases (Pchejetski

et al., 2005). Up-regulation of S1P1, S1P3 and SphK1 also accounted

for prostate cancer cell escape from anti-cancer drug-induced apopto-

sis (Akao et al., 2006).

Closing remarks

The abundant presence of signaling LPs in the serum and other

biological fluids provides them the opportunity to reach almost

every tissue. The potential functions of LP signaling in each tissue

are likely determined by many local factors, such as LP metabolism,

expression and regulation of LP receptors, and other factors in the

LP signaling pathways. The progress on understanding LP signaling

in reproduction has been exciting, yet more comprehensive studies

on the factors influencing tissue-specific functions as well as receptor-

specific functions are needed. The mechanisms of LP signaling in the

physiological and pathological reproductive tissues await further

exploration to ensure the clarification of LP signaling as a therapeutic

target and for the development of modulating agents (Mills and

Moolenaar, 2003; Chun and Rosen, 2006; Milstien and Spiegel,

2006; Herr and Chun, 2007).
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