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background: Although prescription drug use is common during pregnancy, the human teratogenic risks are undetermined for more
than 90% of drug treatments approved in the USA during the past decades. A particular birth defect may have its origins through multiple
mechanisms and possible exposures, including medications. A specific pathogenic process may result in different outcomes depending upon
factors such as embryonic age at which a drug is administered, duration and dose of exposure and genetic susceptibility. This review focuses
on the teratogenic mechanisms associated with a number of medications.

methods: We used three methods to identify the teratogenic mechanisms of medications: the MEDLINE and EMBASE databases, two
recent books on teratogenic agents and a list of drugs classified as U.S. Food and Drug Administration class D or X. Mechanisms were
included only if they are associated with major structural birth defects and medications that are used relatively frequently by women of repro-
ductive age.

results: We identified six teratogenic mechanisms associated with medication use: folate antagonism, neural crest cell disruption, endo-
crine disruption, oxidative stress, vascular disruption and specific receptor- or enzyme-mediated teratogenesis. Many medications classified as
class X are associated with at least one of these mechanisms.

conclusions: Identifying teratogenic mechanisms may not only be relevant for etiologic and post-marketing research, but may also
have implications for drug development and prescribing behavior for women of reproductive age, especially since combinations of seemingly
unrelated prescription and over the counter medications may utilize similar teratogenic mechanisms with a resultant increased risk of birth
defects.
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Introduction
Since approximately half of the pregnancies in the USA are unin-
tended (Finer and Henshaw, 2006), many women expose their
unborn children to drugs before they know they are pregnant. Fur-
thermore, prescription drug use is common during pregnancy in
many other countries as well, with prevalence estimates ranging
from 44 to 79% in several European countries (Olesen et al.,
1999; Bakker et al., 2006; Engeland et al., 2008). Because pregnant
women were often excluded from clinical trials and data from
animal studies are not always predictive for a teratogenic effect in
humans, drug use by pregnant women can be considered experimen-
tal in most instances. Nevertheless, the use of medication is some-
times inevitable in the treatment of women of reproductive age
and during pregnancy. Although it has clearly been shown that
some drugs, e.g. thalidomide and isotretinoin, can produce birth
defects, the teratogenic risks in human pregnancy are undetermined
for more than 90% of drug treatments approved in the USA in the
last decades [Lo and Friedman, 2002; Physicians’ Desk Reference,
2009 or the website of the Teratogen Information System (TERIS)
for more details]. Birth defects are the leading cause of infant mor-
tality and the etiologic pathways are largely unknown for many
defects. A particular birth defect may be caused by many different
factors (e.g. genetics, environmental agents, medications, physical
conditions) as well as by different mechanisms, whereas a specific
pathogenic process may result in different outcomes for chemical
or drug exposures depending upon such factors as embryonic age,
duration and dose of exposure and genetic susceptibility (Pollard,
2007; Schaefer et al., 2007). In addition, maternal determinants,
including drug administration, distribution, metabolism, and excretion,
may also play an important role. Although the mechanisms by which
drugs may cause birth defects are still not completely understood, we
will present an overview of the most important teratogenic mechan-
isms known today. Identifying these mechanisms may be relevant for
drug development, (post-marketing) research and prescribing of
medications to women in their reproductive years.

Methods
We used three methods to identify the most important teratogenic mech-
anisms associated with medical drug use. First, in January 2009, the
MEDLINE and EMBASE bibliographic databases were used as search
engines employing a combination of keywords, including ‘birth defects’,
‘congenital abnormalities’, ‘mechanism’, ‘teratogenesis’, ‘abnormalities,
drug-induced’, ‘pregnancy’ and ‘pharmaceutical preparation’. Only articles
that were published in the English language were included. Secondly, two
recent books on teratogenic agents by Shepard and Lemire (2007) and
Schaefer et al. (2007) were hand-searched for additional mechanisms.
Finally, all medications classified by the U.S. Food and Drug Administration
(FDA) as class D (‘the potential benefits from the use of the drug in preg-
nant women may be acceptable despite its potential risks’) or class X
(‘contraindicated in women who are or may become pregnant’) (U.S.
Food and Drug Administration, 2003; Schwarz et al., 2007) were
screened. Only mechanisms producing major structural birth defects
associated with medications that are relatively frequently used by
women of reproductive age (defined as an annual prescription rate of
.0.5%, if known) were included in this review. These mechanisms are
folate antagonism, neural crest cell disruption, endocrine disruption,

oxidative stress, vascular disruption and specific receptor- or
enzyme-mediated teratogenesis. It should be noted that, so far, some of
these mechanisms are principally understood from animal models;
however, these mechanisms may produce birth defects in humans as
well. In addition, some drugs may be involved in multiple mechanisms
for producing birth defects.

Folate Antagonism
Folate, the generic term for a water-soluble B vitamin, occurs in high
concentrations in certain natural foods (fruits, leafy green vegetables,
beans and liver) as polyglutamate. The synthetic form, folic acid (a
monoglutamic acid), is used in food fortification and vitamin prep-
arations. Folic acid has a higher bioavailability than food folate
(Brouwer et al., 1999). Folate is converted through two reduction
reactions by dihydrofolate reductase (DHFR) to the naturally
bioactive form tetrahydrofolate (THF), which is converted into 5-
methyltetrahydrofolate (5-MTHF) monoglutamate. 5-MTHF is the
main form of folate in the blood circulation and is transported into
cells by three routes: by membrane-associated receptors, by a
carrier-mediated system, the reduced folate carrier, and by passive
diffusion (Antony, 1992; van der Put et al., 2001). Inside the cell, it
acts as an essential co-enzyme in many biochemical reactions by
being an acceptor or donor of one-carbon units in, for example,
purine and pyrimidine synthesis and DNA methylation reactions
(Fig. 1). Since rapidly proliferating tissues require DNA synthesis
the most, it is obvious that folate-dependent reactions are essential
for fetal growth and development and that folate requirements
increase during pregnancy. In addition, DNA methylation is known
to be involved in the epigenetic control of gene expression during
development.

Several drugs disturb the folate metabolism and may have a terato-
genic effect through inhibition of the folate methylation cycle (Table I).
Two general groups of drugs act as folate antagonists. The first group
consists of competitive inhibitors of DHFR and includes methotrexate,
sulfasalazine, triamterene and trimethoprim, which block the conver-
sion of folate to THF by binding irreversibly to the enzyme (Lambie
and Johnson, 1985). They are used in the treatment of a variety of dis-
eases, such as inflammatory bowel disease, rheumatoid arthritis,
hypertension and urinary tract infections. The second group of
drugs may antagonize other enzymes in the folate metabolism,
impair folate absorption or increase folate degradation. This group pri-
marily consists of anti-epileptic drugs, including valproic acid, carbama-
zepine and phenytoin. The teratogenicity of folate antagonists in
humans was first suggested by reports of women who were given ami-
nopterin in the first trimester of pregnancy to induce abortion
(Thiersch, 1952). Some anti-epileptic drugs, e.g. carbamazepine and
valproic acid, are generally known to increase the risk of folate-
sensitive birth defects, such as neural tube defects, orofacial clefts
and limb defects. So far, only three studies have been conducted to
determine the effect of folate antagonists as a group on the occur-
rence of birth defects in humans, but the results are inconsistent, par-
ticularly for DHFR inhibitors (Hernández-Dı́az et al., 2000, 2001;
Meijer et al., 2005). In addition, polymorphisms in genes associated
with the folate metabolism, including methylenetetrahydrofolate
reductase (MTHFR; Botto and Yang, 2000; van Rooij et al.,
2003), methionine synthase reductase (MTRR; van der Linden et al.,

Teratogenic mechanisms of medical drugs 379
D

ow
nloaded from

 https://academ
ic.oup.com

/hum
upd/article/16/4/378/798049 by guest on 25 April 2024



2006) and methylenetetrahydrofolate dehydrogenase (MTHDF1;
Parle-McDermott et al., 2006), may lead to differences in the suscep-
tibility of individuals to folate antagonists.

Experimental studies in a number of animal species demonstrated
that folate deficiency causes intrauterine death, growth retardation
and various congenital malformations (Jordan et al., 1977; Li et al.,
2005). The fact that folic acid supplementation in the periconceptional
period decreases the risk of neural tube defects in humans (Lumley
et al., 2001) strongly suggests a causative role of folate deficiency in
the etiology of these defects. Recently, low blood folate status has

been associated with an increased risk of neural tube defects
(Candito et al., 2008; Zhang et al., 2008). Besides folate deficiency,
a low maternal vitamin B12 (cyanocobalamin) status has also been
shown to be an independent risk factor for neural tube defects
(Ray et al., 2007; Molloy et al., 2009). Vitamin B12 is cofactor to meth-
ionine synthase, which converts homocysteine into methionine.
Therefore, a shortage of vitamin B12 also leads to a distorted folate
metabolism.

The exact mechanism by which disturbances of the folate metab-
olism increase the risk of neural tube defects is unclear. Women

Figure 1 Folate–homocysteine–methionine metabolism. B12, vitamin B12; DHFR, dihydrofolate reductase; MTHF, methyltetrahydrofolate;
MTHFR, methyltetrahydrofolate reductase.

.............................................................................................................................................................................................

Table I Medical drugs associated with folate antagonism

Medication Main indication Interference with folate metabolism

Carbamazepine Epilepsy, bipolar disorder Impairment folate absorption

Cholestyramine Hypercholesterolemia Impairment folate and vitamin B12 absorption

Cyclosporine Transplants, psoriasis, atopic dermatitis Possible interference folate dependent remethylation

Lamotrigine Epilepsy, bipolar disorder Inhibition DHFR

Metformin Diabetes Interference vitamin B12

Methotrexate Cancer, some auto-immune diseases (rheumatoid
arthritis, psoriasis)

Inhibition DHFR

Nicotinic acid Hypercholesterolemia Decrease acitivity CBS

Phenobarbital Epilepsy Impairment folate absorption

Phenytoin Epilepsy Impairment folate absorption, decrease activity methionine
synthase, possible decrease activity MTHFR

Primidone Epilepsy Impairment folate absorption

Pyrimethamine Malaria Inhibition DHFR

Sulfasalazine Inflammatory bowel disease, rheumatoid arthritis Inhibition DHFR

Triamterene Hypertension, edema Inhibition DHFR

Trimethoprim Urinary tract infection Inhibition DHFR

Valproic acid Epilepsy, migraine headache Antimetabolite of folate

CBS, cystathione b-synthase; DHFR, dihydrofolate reductase; MTHFR, methyltetrahydrofolate reductase.
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who carry a fetus with a neural tube defect have significantly higher
levels of homocysteine in plasma and amniotic fluid than control sub-
jects (Mills et al., 1995; Steegers-Theunissen et al., 1995), which may
be caused by folate deficiency. Several hypotheses have been pro-
posed to explain how increased levels of homocysteine, or the
accompanying decreased methionine levels, could cause neural
tube defects. First, homocysteine itself may be teratogenic during
the neurulation process, causing dysmorphogenesis of the neural
tube, heart and ventral wall in chick embryos (Rosenquist et al.,
1996). In rat and mouse embryos, however, increased homocysteine
levels did not cause neural tube defects (van Aerts et al., 1993;
Bennett et al., 2006). Therefore, it seems that elevated plasma
homocysteine levels itself may not cause neural tube defects, but
are a biomarker of disturbances in the methylation cycle which
may result in neural tube defects. More likely, intracellular accumu-
lation of homocysteine leads to increased levels of
S-adenosylhomocysteine, which is a competitive inhibitor of many
methyltransferases, through which gene expression, protein function
and the lipid and neurotransmitter metabolisms might be dysregu-
lated (van der Put et al., 2001; Blom et al., 2006). Furthermore,
the decreased remethylation of homocysteine to methionine leads
to decreased levels of S-adenosylmethionine, which is the most
important methyl-group donor in the methylation cycle. As a
result, neurulation could be disturbed by inadequate gene and
amino acid methylation (van der Put et al., 2001). Methylation
steps also play an important role in the metabolism of lipids and
neurotransmitters and in detoxification of exogenous substances.
This stresses the crucial role of the folate metabolism for normal cel-
lular function, especially during cell division and differentiation. This
hypothesis is supported by previous studies showing that methionine
is required for normal neural tube closure in rat embryos (Coelho
and Klein, 1990; Vanaerts et al., 1994). Disturbances in folate
metabolism are also thought to play a role in the etiology of orofacial
clefts (Werler et al., 1999; van Rooij et al., 2004; Wilcox et al.,
2007), heart anomalies (Czeizel, 1993; Shaw et al., 1995), limb
reduction defects (Czeizel, 1993; Shaw et al., 1995; Werler et al.,
1999), anal atresia (Myers et al., 2001) and urinary tract anomalies
(Czeizel, 1993; Werler et al., 1999) since folic acid supplementation,
alone or in multivitamins, seems to have a protective effect on the
occurrence of these birth defects, although the evidence is not as
strong and consistent as for neural tube defects. Therefore, it
seems likely that medications that act as folate antagonists may
cause various birth defects through similar mechanisms.

Neural Crest Cell Disruption
The neural crest is an important, pluripotent cell population that
originates in the neural folds. The neural crest cells can be divided
into two major populations: the cranial and truncal neural crest.
During neurulation, the neural crest cells detach from the neural
folds and migrate into the embryo to give rise to numerous struc-
tures. In the craniofacial region, various cell types and structures,
including intramembranous bone, cartilage, nerves and muscles,
are derived from the cranial neural crest. The truncal neural crest
produces important components of the peripheral nervous system
(Larsen, 2001). The cardiac neural crest is a subpopulation of the
cranial neural crest, which migrate into the cardiac outflow tract

to mediate septation and into other derivatives of the pharyngeal
arches, such as the thymus and the thyroid and parathyroid glands
(Kirby and Waldo, 1990). Therefore, neural crest-related cardiovas-
cular malformations include aortic arch anomalies and conotruncal
defects (Nishibatake et al., 1987). Membranous ventricular septal
defects are also neural crest-related, since the membranous part
of the interventricular septum originates from the cardiac neural
crest, whereas the muscular part originates from the mesenchyme
(Waldo et al., 1998). Non-cardiovascular defects that have been
proposed to be neural-crest related are craniofacial malformations
(Chai and Maxson, 2006), esophageal atresia (Otten et al., 2000;
Morini et al., 2001) and abnormalities of the pharyngeal glands
(Bockman and Kirby, 1984).

Proper induction, migration, proliferation and differentiation of
neural crest cells are tightly regulated. A variety of molecular signals
and receptors are implicated in neural crest cell development. Fibro-
blast growth factors may be involved in the induction of neural crest
cells (LaBonne and Bronner-Fraser, 1998). Integrins, a family of cell
surface receptors, play a role in the interaction of neural crest cells
with the extracellular matrix (Strachan and Condic, 2008), whereas
interactions between neural crest cells are mediated by cadherins
(Nakagawa and Takeichi, 1998). It has been suggested that Pax3 is
necessary for the fine tuning of the migration process of cardiac
neural crest cells (Epstein et al., 2000). Endothelins and their receptors
may be required for the migration, differentiation and proliferation of
neural crest cells (Clouthier et al., 1998; Yanagisawa et al., 1998).
Therefore, drugs that interfere with these molecular pathways, such
as bosentan (Clozel et al., 1994), which is indicated for the treatment
of pulmonary hypertension and to reduce new digital ulcers associated
with systemic sclerosis, may induce neural crest-related malfor-
mations. In addition, in vivo and in vitro experiments suggested that
altering levels of folate and/or homocysteine cause abnormalities of
cardiac neural crest cell migration, differentiation and cell cycle pro-
gression (Stoller and Epstein, 2005), thereby connecting this terato-
genic mechanism with folate antagonism. However, one of the most
important signaling molecules in neural crest cell development is reti-
noic acid, the biologically active form of vitamin A. Excesses (Lammer
et al., 1985), as well as shortages (Wilson et al., 1953), of retinoic acid
seem to cause neural crest-related malformations, indicating that
proper retinoid homeostasis is necessary for normal development.
Embryonic retinoic acid synthesis and degradation are performed by
retinal dehydrogenases and CYP26, respectively (Fujii et al., 1997;
Duester, 2000). In addition to retinoids used in the treatment of der-
matologic conditions, such as tretinoin, isotretinoin and etretinate,
other drugs that inhibit these enzymes may also be involved in disturb-
ances of retinoid homeostasis. It has been suggested that retinoid ter-
atogenicity is mediated by the retinoic acid receptors (RARs) and
retinoid X receptors (RXRs; Elmazar et al., 1997). These nuclear
ligand-inducible receptors are transcription factors themselves and
affect other downstream genes that are important in development
(Morriss-Kay, 1993). This hypothesis is strengthened by the fact that
mice lacking RARs and RXRs show developmental defects similar to
those caused by vitamin A deficiency, including neural crest-related
malformations (Kastner et al., 1994; Lohnes et al., 1994). Alternatively,
increased Hox gene expression may underlie the detrimental effects of
excess retinoic acid on the development of structures derived from
the neural crest (Krumlauf, 1994; Waxman and Yelon, 2009).
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Endocrine Disruption: Sex
Hormones
Since the 1940s, a number of drugs have been developed to mimic or
inhibit the actions of hormones, including diethylstilbestrol (DES), oral
contraceptives and hormones used in fertility treatment. These medi-
cations and other endocrine disrupting chemicals (EDCs), such as
bisphenol A and phthalates, may interfere with the physiologic func-
tions of endogenous hormones by affecting their release, binding or
metabolism. Their actions may not only depend upon their affinity
or specificity for the estrogen and/or androgen receptors, but also
upon their ability to activate or inhibit receptor-mediated actions,
which are dependent upon the absorption, distribution, metabolism
and excretion (ADME) of these molecules as well. The actions of
EDCs in utero have been of concern because of their possible
impact on the developing reproductive systems, especially since treat-
ment of pregnant women with the synthetic estrogen DES led to an
increased risk of vaginal adenocarcinoma in their daughters (Herbst
et al., 1971). Since human effects were identified first, animal studies
have been conducted to confirm these clinical observations and to
investigate the differences between synthetic and natural estrogen
actions on the embryo or fetus (McLachlan, 1981; Henry et al.,
1984). It is well known that human sex hormone-binding globulin
has a substantially higher affinity for estradiol than for DES or other
synthetic hormones (Hodgert Jury et al., 2000), which suggests that
DES may be more readily available to cross the placenta. DES is
also metabolized to reactive intermediates which covalently bind
(Metzler, 1981; Miller et al., 1982), whereas estradiol is not metab-
olized to similar reactive intermediates (Klopper, 1980; Slikker et al.,
1982). In addition, a-fetoprotein binds estradiol but not DES
(Sheehan and Young, 1979). So besides the capability of the placenta
to reduce the transfer of estradiol, plasma binding and metabolism of
this endogenous hormone to less active estrogens may be important
defense mechanisms for the fetus to reduce the actions of estradiol,
which are apparently not available for the synthetic estrogen DES.

Besides an increase in the risk of vaginal adenocarcinoma in daugh-
ters, prenatal exposure to DES has also been associated with an
increase in reproductive disorders in sons (Giusti et al., 1995) and
grandsons (Klip et al., 2002; Brouwers et al., 2006). In male animals,
prenatal exposure to EDCs with estrogenic or anti-androgenic proper-
ties have been shown to cause hypospadias and cryptorchidism
(McMahon et al., 1995; Kim et al., 2004; Christiansen et al., 2008).
In addition to drugs that influence endocrine homeostasis as their
primary mechanism of action, coatings for oral medications, such as
mesalamine and omeprazole, may be a source of EDC exposure
(Hernández-Dı́az et al., 2009). These enteric coatings contain phtha-
lates, which may affect human male reproductive development due
to their anti-androgenic properties (Swan et al., 2005). Additionally,
other preparations may contain phthalates as plasticizers (Hauser
et al., 2004), but it should be noted that phthalates do not
bio-accumulate and are excreted rapidly in contrast to some other
EDCs. The susceptibility to EDCs may also vary greatly between indi-
viduals due to genetic factors (Giwercman et al., 2007). Therefore, it is
questionable whether the levels of phthalates in medications in par-
ticular are high enough to produce male reproductive tract anomalies
in humans. In epidemiologic studies, omeprazole and mesalamine have

not been associated with an increased risk of major birth defects
(Diav-Citrin et al., 1998; Gill et al., 2009).

Male development is more susceptible to endocrine disruption than
female development because of its hormone dependence (Sharpe,
2006). However, since synthetic hormones and EDCs may affect
endocrine homeostasis in multiple ways, the underlying teratogenic
mechanisms are often difficult to unravel. Because of considerable
species differences and markedly different estrogen levels in normal
human pregnancy compared with normal rodent pregnancy, it is deba-
table whether certain mechanisms also apply to humans. Male sexual
differentiation generally depends on a balanced androgen/estrogen
ratio. In mice, estrogens impair fetal Leydig cell development, and,
as a consequence, testosterone production is decreased (Delbès
et al., 2005). Phthalates that induce male reproductive disorders in
rats mainly do so through inhibition of steroidogenesis by the fetal
testis (Parks et al., 2000; Mylchreest et al., 2002), but this does not
occur in vitro with human fetal Leydig cells (Lambrot et al., 2009). Tes-
tosterone secretion is responsible for most of the masculinization
process, including the development of the male reproductive tract
and external genitalia. Therefore, compromised testosterone pro-
duction may result in hypospadias. In addition, estrogen exposure
also suppresses the production of insulin-like factor 3 by fetal Leydig
cells (Emmen et al., 2000). This peptide regulates the growth of the
gubernaculum (Adham and Agoulnik, 2004), which is responsible for
testicular descent (Hutson et al., 1997). In humans, a deficiency in
androgen production or action seems far more important than estro-
gen exposure in the etiology of cryptorchidism, since the inhibitory
effects of estrogens on testicular steroidogenesis and testicular
descent are only mediated through estrogen receptor a in mice
(Cederroth et al., 2007), which is not present in the human fetal
testes (Gaskell et al., 2003). However, this receptor is expressed
and functional in human fetal penile tissue (Crescioli et al., 2003), so
a role of estrogen exposure in the induction of hypospadias cannot
be excluded. Epidemiologic studies could not confirm this, since pre-
natal estrogen exposure, including pharmaceutical estrogens, does not
seem to be related to hypospadias and cryptorchidism (Storgaard
et al., 2006; Martin et al., 2008).

Alternative mechanisms by which EDCs could cause male repro-
ductive disorders have also been suggested. These mechanisms
include disruption of the androgen signaling pathway (e.g. suppression
of androgen receptor expression), resistance to anti-Müllerian
hormone (AMH) and inhibition of enzymes involved in the inactivation
of sex steroids. However, involvement of these mechanisms in endo-
crine disruption seems unlikely for various reasons. Although it has
been shown that fetal exposure to chemicals that alter the androgen
signaling pathway can induce hypospadias and cryptorchidism in rats
(Rider et al., 2008), the dose needed to induce these effects is very
high, which makes this mode for EDC-induced teratogenesis doubtful.
AMH is primarily responsible for the regression of the Müllerian tract
in male embryos (Josso et al., 2001) and may play a role in testicular
descent (Hutson et al., 1997). So far, however, no compounds have
been identified that affect the production or action of AMH
(Sharpe, 2006). The same argument can be applied to the inhibition
of estrogen sulfotransferases (and probably other enzymes involved
in sex steroid metabolism), which increases cellular estradiol bioavail-
ability. Metabolites of various polycyclic aromatic hydrocarbons inhibit
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this enzyme (Kester et al., 2000), but pharmacological compounds
with a similar mechanism of action have not been identified yet.

Oxidative Stress
In vivo, several drugs, known as redox cycling agents and used in the
treatment of, among others, epilepsy, cardiac arrhythmias and
cancer, undergo single electron reduction reactions yielding radical
species (Kappus, 1986). In redox cycling reactions which involve
oxygen reactive oxygen species (ROS), such as hydrogen oxide,
alkyl peroxides and various radicals (e.g. hydroxyl and superoxide),
are generated (Kovacic and Somanathan, 2006). The creation of
ROS is induced by internal and external agents, such as phagocytes,
enzymes like cytochrome P450 mono-oxygenases (CYP), irradiation
and exogenous chemicals. In much the same manner, the generation
of ROS can be decreased or reversed by various enzymes, e.g. super-
oxide dismutase, catalase and glutathione reductase, and by antioxi-
dants (Kovacic and Jacintho, 2001). Endogenous ROS serve as a
second messenger in signal transduction (Hansen, 2006) and are
thought to be important in ion transport, immunological host
defense, transcription and apoptosis of unwanted cells (Lander,
1997; Dennery, 2007). However, ROS can also be harmful by
binding covalently or irreversibly to cellular macromolecules. Oxi-
dative stress, an imbalance between ROS generation and antioxidant
defense mechanisms of a cell or tissue, causes irreversible oxidation
of DNA, proteins and lipids, leading to inactivation of many
enzymes and cell death (Fig. 2). In addition to damaging cellular macro-
molecules, oxidative stress may affect gene expression by interfering
with the activity of redox-sensitive transcription factors and signal
transduction by oxidizing thiols (Sahambi and Hales, 2006). During
the prenatal period, this may result in birth defects and growth retar-
dation, and in severe cases in in-utero death (Trocino et al., 1995;
Wells et al., 1997; Hansen, 2006).

The developing embryo is especially susceptible to high levels of
ROS because of its weak antioxidant defense, in particular in the
early stages of organogenesis (Zaken et al., 2000), although placental
enzymes play a role in protecting the fetus against oxidative stress

(Foster et al., 2008). Oxidative stress is postulated to be involved in
the pathogenesis of a wide spectrum of birth defects, including skeletal
malformations (Sahambi and Hales, 2006; Yan and Hales, 2006), limb
defects (Wellfelt et al., 1999; Fantel and Person, 2002), neural tube
defects (Ishibashi et al., 1997; Ryu et al., 2007), cleft lip/palate (Well-
felt et al., 1999; Winn and Wells, 1999) and cardiovascular defects
(Wellfelt et al., 1999). Several drugs are known to induce oxidative
stress, which is suspected to be their main teratogenic mechanism.
Among these drugs are thalidomide (Hansen and Harris, 2004), phe-
nytoin (Liu and Wells, 1994; Winn and Wells, 1999), valproic acid
(Defoort et al., 2006), class III antiarrhythmic drugs (Wellfelt et al.,
1999; Danielsson et al., 2003), iron supplements (Scholl, 2005) and
various chemotherapeutic drugs (Kovacic and Jacintho, 2001).

However, it is important to notice that ROS are intermediary
compounds with unpaired electrons and, as a consequence, have a
very short lifetime ranging from nanoseconds to milliseconds. There-
fore, ROS are generally too unstable to be transferred from the
mother to the developing embryo or fetus. Whenever ROS are
increased in embryos, it is the result of embryonic metabolic
changes rather than exposure to ROS of maternal origin (Ornoy,
2007). Increases in embryonic ROS may be caused by increased
enzymatic bioactivation of proteratogens, including bioactivation of
the aforementioned drugs. However, most isoforms of the CYP
family, which catalyze the bioactivation of many compounds after
birth, are expressed at relatively low levels during the embryonic
period. Only some isoforms are expressed at levels that could be sig-
nificant in teratogenesis (Juchau et al., 1992; Wells and Winn, 1996).
In contrast, the prostaglandin H synthases (PHSs) have a relatively
high expression during the embryonic and fetal period compared
with expression after birth (Winn and Wells, 1997; Parman and
Wells, 2002). The peroxidase component of this enzyme can bioac-
tivate exogenous substances, including phenytoin and related terato-
gens (Parman et al., 1998), to toxic reactive intermediates that initiate
ROS formation (Eling et al., 1990). There is evidence that lipoxy-
genases (LPOs), which oxidize proteratogens yielding free radical
intermediates, are substantially expressed in embryonic tissues as
well (Yu and Wells, 1995). As a result, it is assumed that

Figure 2 Molecular and biochemical determinants of oxidative stress teratogenesis. ATM, ataxia telangiectasia mutated; CYP, cytochrome P450;
G6PD, glucose-6-phosphate dehydrogenase; GSH, glutathione; LPO, lipoxygenase; Ogg1, oxoguanine glycosylase 1; PHS, prostaglandin H synthase;
SOD, superoxide dismutase; UDP, uridine diphosphate. Modified from Winn and Wells (1995) with kind permission from Wiley-Blackwell.
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bioactivation of proteratogens by embryonic PHSs and LPOs is
necessary for the formation of ROS and subsequent macromolecule
damage in the developing embryo (Wells et al., 1997). Additionally,
embryonic ROS formation and subsequent oxidative stress may be
induced by hypoxia. It is well known from adult cases of cardiovascu-
lar diseases (Madamanchi et al., 2005) that ROS are extensively
formed during reperfusion of ischemic tissues, while there is con-
siderable evidence that hypoxia followed by reperfusion is teratogenic
in animal studies (Wellfelt et al., 1999). Besides embryonic ROS gen-
eration, maternal determinants are thought to play an indirect role in
ROS-mediated teratogenesis. Embryonic exposure to proteratogens
is altered by maternal pathways that eliminate these compounds or
their metabolites before they can cross the placenta. Deficiencies
in those pathways increase the maternal plasma concentration of
proteratogens and therefore the amount that reaches the embryo.
Furthermore, maternal production of factors that interfere with
embryonic ROS-mediated signal transduction or alter embryonic
determinants of oxidative stress may also contribute to the risk of
teratogenicity (Wells et al., 2005).

Vascular Disruption
Vascular disruption defects are structural birth defects resulting from
interference with or extrinsic breakdown of an originally normal pre-
natal development of the arteries, veins and capillaries (vasculature)
(Spranger et al., 1982; Gilbert-Barness and Van Allen, 2007). Tra-
ditionally, it has been stressed that a teratogen exerts its influence
on the fetus during the first 3 months of development. Prenatal
exposure to agents which can induce vascular disruption, however,
can also induce damage later in pregnancy to structures that were
initially formed normally. After birth it may be impossible to determine
whether a certain structural anomaly, such as a limb defect, is the
result of an intrinsically abnormal developmental process, vascular dis-
turbances or, for example, amniotic banding.

Vascular disruption refers to disturbances in the blood circulation in
the uterine-placental unit, the placental-fetal unit or the fetus itself.
These disturbances include hyperperfusion, hypoperfusion, hypoxia
and obstruction. They may be caused by acute or chronic decreases
in uterine blood flow, vascular infections or an abnormal anatomy in
the uterine-placental unit. Factors such as placental insufficiency,
amnion rupture and umbilical cord obstruction may cause failures in
the vascular supply in the placental-fetal unit. In the fetus, disruption
of newly formed vessels, external compression, embolic events, pre-
mature regression of embryonic vessels, occlusion with venous engor-
gement and abnormal regulation of vessel formation lead to vascular
disruption (Van Allen, 1992). Vasoconstriction of maternal and fetal
vessels, hypoperfusion and obstruction may cause a reduced supply
of nutrients to the embryonic tissues, which can affect development
and growth of embryonic structures or result in tissue loss. The
latter may result in a phenotype similar to a primary malformation
(Hootnick et al., 1980). Furthermore, these disturbances may create
a state of hypoxia, which is involved in the formation of ROS and oxi-
dative stress (Ornoy, 2007).

Exposure to vasoactive substances in pregnancy, especially to those
with vasoconstrictive effects, have been hypothesized to play a causal
role in vascular disruption defects. These teratogens could decrease
placental or fetal blood flow or affect the development of blood

vessels, thereby changing the structure and/or anatomy of the vascu-
lature (Gilbert-Barness and Van Allen, 2007). In epidemiologic studies,
vasoactive therapeutic drugs that have reported associations with the
vascular disruption defects described below include misoprostol
(Orioli and Castilla, 2000; Vargas et al., 2000), aspirin (Kozer et al.,
2002; Werler et al., 2002), ergotamine (Raymond, 1995; Smets
et al., 2004) and pseudoephedrine (Werler et al., 2002; Werler
et al., 2004). However, all drugs with vasoconstrictive or vasodilating
effects may have the potential to cause birth defects due to vascular
disruption.

The types of structural anomalies that may be caused by vascular
disruption are determined by the timing during gestation, the location
and severity of tissue damage and the possible presence of secondary
adhesion of necrotic tissue with adjacent organs or the amnion
(Gilbert-Barness and Van Allen, 2007). During embryogenesis, vascu-
lar disruption results in aberrant differentiation and distortion of con-
tiguous tissues, loss of tissue and incomplete development of
structures within the same or a secondary embryonic developmental
field. Anomalies resulting from vascular disruption during the fetal
period are usually limited to the areas with disturbed blood supply,
to which the peripheral vasculature is most susceptible (Van Allen,
1992). Therefore, the majority of defects caused by tissue damage
through vascular disruption occur in structures supplied by the
most peripheral vasculature, such as the distal limbs and the embryo-
nic intestine (Jones, 1991; Los et al., 1999). Birth defects that were
attributed to vascular disruption include terminal limb reductions
(Kino, 1975; Hoyme et al., 1982), hydranencephaly/porencephaly
(Hoyme et al., 1981a; Mittelbronn et al., 2006), gastroschisis
(Hoyme et al., 1981b; Komuro et al., 2003), small intestinal atresia
(Louw and Barnard, 1955; Cragan et al., 1994) and Poland
anomaly (Shalev and Hall, 2003; Puvabanditsin et al., 2005).
However, there are no known experimental models for the complete
range of birth defects caused by vascular disruption. The majority of
evidence in support of this mechanism comes from case reports with
suspected vascular events such as occlusion, emboli, amnion rupture
and twin placental vessel anastomoses (Gilbert-Barness and Van
Allen, 2007).

Specific Receptor- or
Enzyme-mediated Teratogenesis
Many medical drugs act on a specific receptor or enzyme in the human
body, leading to a particular mechanism of action. Below we describe
the possible effects of inhibition or stimulation of some of these
specific receptors and enzymes on fetal development.

Angiotensin-converting enzyme and
angiotensin II receptors
The renin–angiotensin system (Fig. 3) is generally described as a hor-
monal system that plays an important role in the regulation of blood
pressure and in the homeostasis of extracellular fluid volume.
The main effector hormone of this system is angiotensin II (AT II),
which elevates blood pressure by acting directly on vascular smooth
muscle cells to cause vasoconstriction. The components of the
renin–angiotensin system are present in the human fetus, although
their distribution varies compared with that in adults (Schütz et al.,
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1996). Two types of commonly used antihypertensive drugs, the
angiotensin-converting enzyme (ACE) inhibitors and the AT II recep-
tor antagonists, may disrupt the fetal renin–angiotensin system and
thereby impair fetal development. In contrast to other antihyperten-
sive drugs, ACE inhibitors and AT II receptor antagonists also influence
renal function (Jackson and Garrison, 1996). Therefore, their effects
are not exclusively produced through fetal hypotension and vascular
disruption. The decrease in fetal renal vascular tone may contribute
to a human malformation syndrome that is typical for exposure to
ACE inhibitors during the second and third trimesters of pregnancy,
characterized by renal tubular dysgenesis and oligohydramnios, their
sequelae, including limb contractures and pulmonary hypoplasia, and
hypocalvaria (Pryde et al., 1993; Shotan et al., 1994). Although the
two AT II receptor subtypes, AT1 and AT2, are expressed in early
development (Schütz et al., 1996), the developmental effects of
ACE inhibitors during the first trimester are controversial. However,
a recent study showed an increased risk of cardiovascular and
central nervous system malformations (Cooper et al., 2006). The
effects of the less often studied AT II receptor inhibitors are con-
sidered to be similar to those of ACE inhibitors.

Hydroxymethylglutaryl-coenzyme A
reductase
The mevalonate pathway is a complex pathway with cholesterol as an
essential product. In embryonic tissues, cholesterol is needed for
normal growth patterns, signaling domains in plasma membranes, syn-
thesis of steroid hormones and activation of Hedgehog morphogens
(Carr et al., 1980; Kelley and Herman, 2001). Since Hedgehog pro-
teins act as key regulators of embryonic growth, patterning and mor-
phogenesis of many structures, down-regulation of the synthesis of
these proteins may lead to birth defects (Helms et al., 1997; Gofflot
et al., 2003). Statins inhibit hydroxymethylglutaryl-coenzyme A
(HMG-CoA) reductase, the rate-limiting enzyme in the mevalonate
pathway which converts HMG-CoA to mevalonic acid. Therefore,
inhibition of this pathway by statins may lead to a wide range of
defects. However, epidemiologic studies with appropriate control
populations to confirm a statin syndrome in humans have not been
performed yet due to the low frequency of statin use among pregnant
women. Although a recurrent pattern of structural defects has been
described (Edison and Muenke, 2004), a recent study could not
confirm this hypothesized pattern (Petersen et al., 2008).

Histone deacetylase
Histone deacetylases (HDACs) are present in most organisms, in
which their best known function is the deacetylation of histones.
These are crucial in a number of cellular functions, including the regu-
lation of gene expression by chromatin remodelling. HDACs deacety-
late lysine residues on histone tails and condensate chromatin,
resulting in limited access of transcriptional activators to the DNA
(Johnstone, 2002). Therefore, inhibition of HDACs may result in inter-
ruption of cell proliferation, differentiation and apoptosis (Marks et al.,
2000), which has been shown in cultured tumor cells (Medina et al.,
1997; Glick et al., 1999). Although normal cells seem to be relatively
resistant to HDAC inhibitors (Qiu et al., 2000; Burgess et al., 2004),
HDAC activity is crucial for embryonic development as is shown by
the HDAC1 knockout mice, which die early in development due to
growth retardation and proliferation defects (Lagger et al., 2002).
Not much has been published on the effects of HDAC inhibition in
the pathogenesis of human birth defects, but animal studies show
that it might lead to axial skeletal malformations (Menegola et al.,
2005; Di Renzo et al., 2007) and neural tube defects (Eikel et al.,
2006). Drugs that inhibit HDACs include valproic acid (Göttlicher
et al., 2001; Phiel et al., 2001), trichostatin A (Yoshida et al., 1990)
and salicylates (Di Renzo et al., 2008). Furthermore, boric acid, an
inactive ingredient used in pharmaceutical preparations and as an anti-
bacterial product in non-prescription products, may induce hyperace-
tylation in somites (Di Renzo et al., 2007).

Cyclooxygenase-1
Non-steroidal anti-inflammatory drugs (NSAIDs) are used for their
analgesic, antipyretic and anti-inflammatory effects induced by acting
as an inhibitor of cyclooxygenases (COXs), which catalyze the conver-
sion of arachidonic acid to prostaglandins. Two distinct isoforms have
been identified, COX-1 and COX-2. The constitutive form, COX-1,
is expressed in most tissues, where it produces prostaglandins that are
necessary for various physiologic processes, such as blood pressure
regulation and platelet aggregation. COX-2 expression, on the other
hand, is induced by inflammatory mediators, producing prostaglandins
which are important in inflammation (Vane et al., 1998). The anti-
inflammatory properties of NSAIDs are due to the inhibition of
COX-2, whereas the adverse effects of non-selective NSAIDs,
which inhibit both COX isoforms, are the result of COX-1 inhibition
(Vane et al., 1998). COX-1 inhibition may be involved in the induction

Figure 3 The renin–angiotensin system. ACE, angiotensin-converting enzyme.
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of cardiac, midline and diaphragm defects by non-selective NSAIDs,
since these defects were associated with exposure to drugs with a
relatively high COX-1/COX-2 ratio in rats and rabbits (Cappon
et al., 2003). Furthermore, COX-2 is not expressed during embryo-
genesis in rats (Stanfield et al., 2003; Streck et al., 2003), which
strongly suggests that COX-2 does not play a role in NSAID-induced
teratogenicity noted in this species. Acetylsalicylic acid (aspirin), the
only NSAID that irreversibly inhibits COX by acetylation (Vane
et al., 1998), seems to be associated with a higher incidence of mal-
formations than other NSAIDs in animal studies (Cook et al., 2003).
Initially, first trimester exposure to NSAIDs did not seem to be associ-
ated with birth defects in humans (Nielsen et al., 2001; Cleves et al.,
2004), but recent epidemiologic studies indicate an increased risk of
orofacial clefts and cardiovascular defects, especially cardiac septal
defects (Ericson and Källén, 2001; Källén and Otterblad Olausson,
2003; Ofori et al., 2006).

N-methyl-D-aspartate receptors
In the developing brain, N-methyl-D-aspartate (NMDA) receptors
appear to play an important role in neuronal migration and in the for-
mation and elimination of synapses (Komuro and Rakic, 1993). Block-
ade of the NMDA receptor in studies using NMDA receptor
antagonists or knockout mice affect neuronal development (Komuro
and Rakic, 1993; Elberger and Deng, 2003), which may result in struc-
tural abnormalities of the brain due to errors in migration of neuronal
and glial elements (Clarren et al., 1978). Rats are most vulnerable to
the effects of NMDA receptor antagonists in the first week after
birth (Ikonomidou et al., 1999), during which the expression of
NMDA receptors peaks (Monyer et al., 1994) and the brain growth
spurt occurs (Dobbing and Sands, 1971). Since the expression of
NMDA in humans peaks in weeks 20–22 of gestation (Lee and
Choi, 1992), during which the brain growth spurt starts, and continues
throughout the third trimester and postnatally (Dobbing and Sands,
1973), it has been hypothesized that humans might be susceptible
to the effects of NMDA receptor antagonists from 20 weeks of ges-
tation onward (Ikonomidou et al., 1999). Therefore, it may be con-
cluded that exposure to NMDA receptor antagonists, such as
amantadine (Kornhuber et al., 1991), dextromethorphan (Wong
et al., 1988) and ketamine (Anis et al., 1983), could result in minor
malformations of the brain. Controversial is the suggested role of
NMDA receptor antagonists in the induction of neural tube and
neural crest defects, as shown by Andaloro et al. (1998) using chick
embryos. These results could not be replicated in mice (Bennett
et al., 2006) and the widely used drug dextromethorphan does not
seem to be associated with congenital defects in humans (Briggs
et al., 2008). Although NMDA receptors are being expressed in the
human spinal cord during the first trimester (Åkesson et al., 2000),
inhibition of these receptors does not appear to play a role in the
induction of neural tube and neural crest defects. Therefore, it is ques-
tionable whether this mechanism produces major structural birth
defects in humans.

5-Hydroxytryptamine receptors
and transporters
Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotrans-
mitter, which is derived from the maternal circulation and transported

to the embryo (Yavarone et al., 1993a). It is involved in a wide range of
processes during development, including morphogenesis of craniofa-
cial structures (Shuey et al., 1993), cranial neural crest migration (Moi-
seiwitsch and Lauder, 1995) and cell proliferation (Lauder, 1993). The
effects of 5-HT appear to be mediated by 5-HT receptors (Choi et al.,
1997), G-protein-linked transmembrane receptors with the exception
of the 5-HT3 receptor, which is a ligand-gated ion channel. At least
some of the 5-HT receptor subtypes are expressed in mice
embryos, and these are shown to be involved in the morphogenesis
of various embryonic tissues (Lauder et al., 2000; Nebigil et al.,
2001). Therefore, increased stimulation or suppression of 5-HT
receptors by agonists and antagonists may cause birth defects.
Drugs known to be agonists of some 5-HT receptor subtypes
include sumatriptan (Scott, 1994) and buspirone (Tunnicliff, 1991),
whereas, among others, risperidone (Schotte et al., 1996), granisetron
(Blower, 2003) and quetiapine (Meltzer et al., 2003) antagonize some
5-HT receptor subtypes. Furthermore, the actions of 5-HT are termi-
nated by the uptake of the neurotransmitter by serotonin transpor-
ters, implying that prenatal exposure to selective serotonin-reuptake
inhibitors (SSRIs) may also cause birth defects. This class of anti-
depressants, which includes fluoxetine, paroxetine and sertraline,
has been shown to cause craniofacial malformations in mice (Shuey
et al., 1992). 5-HT also seems to be involved in cardiac morphogenesis
(Yavarone et al., 1993b; Sari and Zhou, 2003), indicating that blockade
of 5-HT uptake might produce cardiovascular malformations as well.
In humans, however, the risk of birth defects associated with SSRIs
as a group appears to be small (Kulin et al., 1998; Alwan et al.,
2007; Louik et al., 2007), although recent reports suggest an associ-
ation between paroxetine use and birth defects (Bérard et al., 2007;
Källén and Otterblad Olausson, 2007), but this has been refuted by
others (Einarson et al., 2008). An association between first-trimester
exposure to fluoxetine and cardiovascular anomalies has been
suggested as well (Diav-Citrin et al., 2008). Therefore, it may be
hypothesized that individual SSRIs may have different effects on the
developing embryo. Due to the inconsistencies in the results of epide-
miologic studies, one may suspect that other issues also play a role in
this possible association, including disease status of the mother and
other confounding factors, such as detection bias and use of concomi-
tant medications.

g-Aminobutyric acid receptors
In vertebrates, g-aminobutyric acid (GABA) is the major inhibitory
neurotransmitter, which binds to specific transmembrane GABA
receptors. Extraneuronal GABA-ergic systems are thought to be
present in other tissues as well, including the testis (Tillakaratne
et al., 1992), oviduct and ovary (Erdö et al., 1989; Tillakaratne et al.,
1992) and pancreas (Baekkeskov et al., 1990), where GABA is hypoth-
esized to play a morphogenetic role during embryonic development
(Varju et al., 2001). The extraneuronal GABA-ergic system also
seems to play an important role in the normal development of the
palate (Hagiwara et al., 2003), but the exact function of this system
in non-neural tissues is still unknown. The major groups of drugs
that exert their pharmacologic actions through GABA receptors are
benzodiazepines, which enhance the effects of GABA (Haefely,
1984). Although these drugs are commonly used during pregnancy
and neonatal complications such as the ‘floppy infant syndrome’ and
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the ‘withdrawal syndrome’ have frequently been observed data on the
teratogenicity of benzodiazepines are scarce and inconsistent. In some
epidemiologic studies, use of benzodiazepines in the first trimester has
been associated with orofacial clefts (Dolovich et al., 1998), cardiovas-
cular malformations (Czeizel et al., 2004) and gastrointestinal tract
atresia (Norstedt Wikner et al., 2007), but other studies did not
find an association with birth defects (Rosenberg et al., 1983; Ornoy
et al., 1998; Lin et al., 2004).

Carbonic anhydrase
Carbonic anhydrases are metalloenzymes that catalyze the reversible
hydration of CO2 into the bicarbonate ion and protons. This reaction
is involved in many biological processes, including pH homeostasis,
respiration, biosynthetic reactions and bone resorption (Maren,
1967; Sly and Hu, 1995). Several cytoplasmic and membrane-bound
carbonic anhydrase isoenzymes are expressed in various tissues in
developing human and mouse embryos (Jeffery et al., 1980;
Lönnerholm and Wistrand, 1983; Kallio et al., 2006), and inhibitors
of carbonic anhydrase, such as acetazolamide, which is used in the
treatment of epilepsy, altitude sickness, edema and sleep apnea,
have been associated with birth defects, especially limb deformities
(Layton and Hallesy, 1965; Scott et al., 1990). A reduction in embryo-
nic intracellular pH is thought to be the teratogenic mechanism of car-
bonic anhydrase inhibitors (Scott et al., 1990). Intracellular pH has
been shown to control or to be associated with various cellular func-
tions, including protein synthesis, proliferation and glycolysis (Madshus,
1988). Interference with these processes may result in abnormal
development, but evidence of the existence of this mechanism in
humans is lacking.

Summary
From the literature, we identified six principal teratogenic mechanisms
associated with medical drug use. Beside the fact that almost all
medical drugs classified by Schwarz et al. (2007) as U.S. FDA class
X are associated with at least one of these mechanisms, various
other prescription and over the counter drugs may produce terato-
genic effects through these mechanisms. Increased risks for specific
birth defects have been observed for some medical drugs after use
in human pregnancy, which strengthens the evidence in favor of the
associated teratogenic mechanisms. However, since the possibilities
to conduct experiments during human pregnancy are very limited,
the major part of the evidence in support of various mechanisms
described above was derived from animal studies, in which the
dosages administered were often far above the therapeutic dosage
schedules used in humans. Therefore, we cannot be sure that these
mechanisms also apply to humans. In addition, some mechanisms
share similar pathways and some drugs may be involved in multiple
mechanisms, e.g. valproic acid. Nevertheless, the identification of ter-
atogenic mechanisms are critical for research purposes, in particular
for observational studies, in which specific medications with a similar
teratogenic mechanism might be combined to increase study power.
It may have implications for drug development and for prescribing mul-
tiple drugs to women of reproductive age as well, especially since
combinations of seemingly unrelated drugs may produce specific ter-
atogenic mechanisms, which may strongly increase the risk of birth

defects. Given that discontinuing a certain medication may pose
even a higher risk for severe complications than continuing with the
use of a possible teratogen, the benefits for the mother should
always be balanced against the risks for the (unborn) child when pre-
scribing drug treatment to pregnant women.
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Kornhuber J, Bormann J, Hübers M, Rusche K, Riederer P. Effects of the
1-amino-adamantanes at the MK-801-binding site of the
NMDA-receptor-gated ion channel: a human postmortem brain study.
Eur J Pharmacol 1991;206:297–300.

Kovacic P, Jacintho JD. Reproductive toxins: pervasive theme of oxidative
stress and electron transfer. Curr Med Chem 2001;8:863–892.

Kovacic P, Somanathan R. Mechanism of teratogenesis: electron transfer,
reactive oxygen species, and antioxidants. Birth Defects Res C Embryo
Today 2006;78:308–325.

Kozer E, Nikfar S, Costei A, Boskovic R, Nulman I, Koren G. Aspirin
consumption during the first trimester of pregnancy and congenital
anomalies: a meta-analysis. Am J Obstet Gynecol 2002;187:1623–1630.

Krumlauf R. Hox genes in vertebrate development. Cell 1994;78:191–201.
Kulin NA, Pastuszak A, Sage SR, Schick-Boschetto B, Spivey G,

Feldkamp M, Ormond K, Matsui D, Stein-Schechman AK, Cook L
et al. Pregnancy outcome following maternal use of the new selective
serotonin reuptake inhibitors: a prospective controlled multicenter
study. J Am Med Assoc 1998;279:609–610.

LaBonne C, Bronner-Fraser M. Neural crest induction in Xenopus:
evidence for a two-signal model. Development 1998;125:2403–2414.

Lagger G, O’Carroll D, Rembold M, Khier H, Tischler J, Weitzer G,
Schuettengruber B, Hauser C, Brunmeir R, Jenuwein T et al. Essential
function of histone deacetylase 1 in proliferation control and CDK
inhibitor repression. EMBO J 2002;21:2672–2681.

Lambie DG, Johnson RH. Drugs and folate metabolism. Drugs 1985;
30:145–155.

Lambrot R, Muczynski V, Lécureauil C, Angenard G, Coffigny H,
Pairault C, Moison D, Frydman R, Habert R, Rouiller-Fabre V.
Phthalates impair germ cell development in the human fetal testis in
vitro without change in testosterone production. Environ Health
Perspect 2009;117:32–37.

Lammer EJ, Chen DT, Hoar RM, Agnish ND, Benke PJ, Braun JT, Curry CJ,
Fernhoff PM, Grix AW Jr, Lott IT et al. Retinoic acid embryopathy. N
Engl J Med 1985;313:837–841.

Lander HM. An essential role for free radicals and derived species in signal
transduction. FASEB J 1997;11:118–124.

Larsen WJ. Human Embryology, 3rd edn. Philadelphia: Churchill
Livingstone, 2001.

Lauder JM. Neurotransmitters as growth regulatory signals: role of
receptors and second messengers. Trends Neurosci 1993;16:233–240.

Lauder JM, Wilkie MB, Wu C, Singh S. Expression of 5-HT2A, 5-HT2B and
5-HT2C receptors in the mouse embryo. Int J Dev Neurosci 2000;
18:653–662.

Layton WM Jr, Hallesy DW. Deformity of forelimb in rats: association with
high doses of acetazolamide. Science 1965;149:306–308.

Lee H, Choi BH. Density and distribution of excitatory amino acid
receptors in the developing human fetal brain: a quantitative
autoradiographic study. Exp Neurol 1992;118:284–290.

Li D, Pickell L, Liu Y, Wu Q, Cohn JS, Rozen R. Maternal
methylenetetrahydrofolate reductase deficiency and low dietary folate
lead to adverse reproductive outcomes and congenital heart defects
in mice. Am J Clin Nutr 2005;82:188–195.

390 van Gelder et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

upd/article/16/4/378/798049 by guest on 25 April 2024



Lin AE, Peller AJ, Westgate MN, Houde K, Franz A, Holmes LB.
Clonazepam use in pregnancy and the risk of malformations. Birth
Defects Res A Clin Mol Teratol 2004;70:534–536.

Liu L, Wells PG. In vivo phenytoin-initiated oxidative damage to proteins
and lipids in murine maternal hepatic and embryonic tissue organelles:
potential molecular targets of chemical teratogenesis. Toxicol Appl
Pharmacol 1994;125:247–255.

Lo WY, Friedman JM. Teratogenicity of recently introduced medications in
human pregnancy. Obstet Gynecol 2002;100:465–473.

Lohnes D, Mark M, Mendelsohn C, Dollé P, Dierich A, Gorry P,
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